[1] CHANG C, CHEN W, CHEN Y, et al. Recent progress on two-dimensional materials[J]. Acta Physico Chimica Sinica, 2021, 37(12): 2108017. [2] CASTELLANOS-GOMEZ A. Why all the fuss about 2D semiconductors?[J]. Nature Photonics, 2016, 10(4): 202-204. [3] ZHOU X, HU X Z, YU J, et al. 2D layered material-based van der Waals heterostructures for optoelectronics[J]. Advanced Functional Materials, 2018, 28(14): 1706587. [4] SUN B Q, XU J, ZHANG M, et al. Progress on crystal growth of two-dimensional semiconductors for optoelectronic applications[J]. Crystals, 2018, 8(6): 252. [5] KANG S, LEE D H, KIM J, et al. 2D semiconducting materials for electronic and optoelectronic applications: potential and challenge[J]. 2D Materials, 2020, 7(2): 022003. [6] BERKELBACH T C, REICHMAN D R. Optical and excitonic properties of atomically thin transition-metal dichalcogenides[J]. Annual Review of Condensed Matter Physics, 2018, 9: 379-396. [7] HU Z H, WU Z T, HAN C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering[J]. Chemical Society Reviews, 2018, 47(9): 3100-3128. [8] ZHAO W J, GHORANNEVIS Z, CHU L Q, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2[J]. ACS Nano, 2013, 7(1): 791-797. [9] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. [10] PIAO M X, LI C L, JOO M K, et al. Hydrothermal synthesis of stable 1T-WS2 and single-walled carbon nanotube hybrid flexible thin films with enhanced thermoelectric performance[J]. Energy Technology, 2018, 6(10): 1921-1928. [11] ULLAH F, NGUYEN T K, LE C T, et al. Pulsed laser deposition assisted grown continuous monolayer MoSe2[J]. CrystEngComm, 2016, 18(37): 6992-6996. [12] ZHANG G X, WANG C X, YAN B, et al. Synthesis of centimeter-scale WS2 membrane by chemical vapor deposition[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(28): 22560-22572. [13] ZHOU J D, LIN J H, HUANG X W, et al. A library of atomically thin metal chalcogenides[J]. Nature, 2018, 556(7701): 355-359. [14] GONG Y J, YE G L, LEI S D, et al. Synthesis of millimeter-scale transition metal dichalcogenides single crystals[J]. Advanced Functional Materials, 2016, 26(12): 2009-2015. [15] YANG P F, ZOU X L, ZHANG Z P, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass[J]. Nature Communications, 2018, 9(1): 1-10. [16] SHI B, ZHOU D M, FANG S X, et al. Facile and controllable synthesis of large-area monolayer WS2 flakes based on WO3 precursor drop-casted substrates by chemical vapor deposition[J]. Nanomaterials, 2019, 9(4): 578. [17] CHEN P, ZHANG Z W, DUAN X D, et al. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices[J]. Chemical Society Reviews, 2018, 47(9): 3129-3151. [18] SHENG Y W, TAN H J, WANG X C, et al. Hydrogen addition for centimeter-sized monolayer tungsten disulfide continuous films by ambient pressure chemical vapor deposition[J]. Chemistry of Materials, 2017, 29(11): 4904-4911. [19] YU H, LIAO M Z, ZHAO W J, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films[J]. ACS Nano, 2017, 11(12): 12001-12007. [20] YIN H, ZHANG X D, LU J W, et al. Substrate effects on the CVD growth of MoS2 and WS2[J]. Journal of Materials Science, 2020, 55(3): 990-996. [21] HUANG M, DENG B W, DONG F, et al. Substrate engineering for CVD growth of single crystal graphene[J]. Small Methods, 2021, 5(5): e2001213. [22] KIM H S, KUMAR M D, PATEL M, et al. High-performing MoS2-embedded Si photodetector[J]. Materials Science in Semiconductor Processing, 2017, 71: 35-41. [23] ZHOU W, ZOU X L, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 2013, 13(6): 2615-2622. [24] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102-1120. [25] ZHAO H Q, ZHANG G X, YAN B, et al. Substantially enhanced properties of 2D WS2 by high concentration of erbium doping against tungsten vacancy formation[J]. Research, 2022: 9840970. [26] DING K X, FU Q G, NAN H Y, et al. Controllable synthesis of WS2(1-x)Se2x monolayers with fast photoresponse by a facile chemical vapor deposition strategy[J]. Materials Science and Engineering: B, 2021, 269: 115176. [27] LI S S, WANG S F, TANG D M, et al. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals[J]. Applied Materials Today, 2015, 1(1): 60-66. [28] WANG Z, XIE Y, WANG H L, et al. NaCl-assisted one-step growth of MoS2-WS2 in-plane heterostructures[J]. Nanotechnology, 2017, 28(32): 325602. [29] MCCREARY K M, HANBICKI A T, JERNIGAN G G, et al. Synthesis of large-area WS2 monolayers with exceptional photoluminescence[J]. Scientific Reports, 2016, 6(1): 1-7. [30] KIM M S, YUN S J, LEE Y J, et al. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers[J]. ACS Nano, 2016, 10(2): 2399-2405. [31] BAI G X, YUAN S G, ZHAO Y D, et al. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence[J]. Advanced Materials, 2016, 28(34): 7472-7477. [32] 黄佳欣,谢师禹,程学瑞,等. WS2/WSe2异质结层间相互作用的光谱研究[J]. 中国科学技术大学学报, 2019, 49(6): 452-457. HUANG J X, XIE S Y, CHENG X R, et al. An optical spectrum study of interlayer interaction in WS2/WSe2 heterostructure[J]. Journal of University of Science and Technology of China, 2019, 49(6): 452-457 (in Chinese). |