[1] ISBERG J, HAMMERSBERG J, JOHANSSON E, et al. High carrier mobility in single-crystal plasma-deposited diamond[J]. Science, 2002, 297(5587): 1670-1672. [2] YU X X, ZHOU J J, QI C J, et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz[J]. IEEE Electron Device Letters, 2018, 39(9): 1373-1376. [3] IMANISHI S, HORIKAWA K, OI N, et al. 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity[J]. IEEE Electron Device Letters, 2018, 40(2): 279-282. [4] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501. [5] KASU M. Diamond epitaxy: basics and applications[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 317-328. [6] MOKUNO Y, CHAYAHARA A, SODA Y, et al. Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD[J]. Diamond and Related Materials, 2005, 14(11/12): 1743-1746. [7] YAMADA H, CHAYAHARA A, MOKUNO Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond[J]. Applied Physics Letters, 2014, 104(10): 102110. [8] DU H H, LIU Z H, HAO L, et al. High-performance E-mode p-channel GaN FinFET on silicon substrate with high ION/IOFF and high threshold voltage[J]. IEEE Electron Device Letters, 2022, 43(5): 705-708. [9] ROMANCZYK B, LI W Y, GUIDRY M, et al. N-polar GaN-on-sapphire deep recess HEMTs with high W-band power density[J]. IEEE Electron Device Letters, 2020, 41(11): 1633-1636. [10] OHTSUKA K, SUZUKI K, SAWABE A, et al. Epitaxial growth of diamond on iridium[J]. Japanese Journal of Applied Physics, 1996, 35(8B): L1072. [11] SCHRECK M, HÖRMANN F, ROLL H, et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: a route for the realization of single-crystal diamond films[J]. Applied Physics Letters, 2001, 78(2): 192-194. [12] SCHRECK M, GSELL S, BRESCIA R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J]. Scientific Reports, 2017, 7(1): 1-8. [13] LIAO K J, WANG W L, FENG B. Effect of nucleation rate on heteroepitaxial diamond growth on Si (100) via electron-emission-enhanced nucleation by hot filament chemical vapor deposition[J]. Physica Status Solidi (a), 1998, 167(1): 117-123. [14] ZHAO S J, HUANG J, ZHOU X Y, et al. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate[J]. Applied Surface Science, 2018, 434: 260-264. [15] GAO F, JIA X P, MA H A, et al. Hetero-epitaxial diamond single crystal growth on surface of cBN single crystals at high pressure and high temperature[J]. Chinese Physics Letters, 2008, 25(6): 2273-2276. [16] WANG C X, GAO C X, ZHANG T C, et al. Preparation of p-n junction diode by B-doped diamond film grown on Si-doped c-BN[J]. Chinese Physics Letters, 2002, 19(10): 1513-1515. [17] HAYASHI Y, MATSUSHITA Y, SOGA T, et al. The formation of a (111) texture of the diamond film on Pt/TiO2/SiOx/Si substrate by microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 499-503. [18] SITAR Z, LIU W, YANG P C, et al. Heteroepitaxial nucleation of diamond on nickel[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 276-282. [19] ITO S, NAGAI M, MATSUMOTO T, et al. Self-separation of freestanding diamond films using graphite interlayers precipitated from C-dissolved Ni substrates[J]. Journal of Crystal Growth, 2017, 470: 104-107. [20] KAWARADA H, WILD C, HERRES N, et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide[J]. Journal of Applied Physics, 1997, 81(8): 3490-3493. [21] KAWARADA H, SUESADA T, NAGASAWA H. Heteroepitaxial growth of smooth and continuous diamond thin films on silicon substrates via high quality silicon carbide buffer layers[J]. Applied Physics Letters, 1995, 66(5): 583-585. [22] VERSTRAETE M J, CHARLIER J C. Why is iridium the best substrate for single crystal diamond growth?[J]. Applied Physics Letters, 2005, 86(19): 191917. [23] TSUBOTA T, OHTA M, KUSAKABE K, et al. Heteroepitaxial growth of diamond on an iridium (100) substrate using microwave plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 2000, 9(7): 1380-1387. [24] SCHRECK M, ROLL H, STRITZKER B. Diamond/Ir/SrTiO3: a material combination for improved heteroepitaxial diamond films[J]. Applied Physics Letters, 1999, 74(5): 650-652. [25] KIM S W, KAWAMATA Y, TAKAYA R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (11-20) sapphire substrate[J]. Applied Physics Letters, 2020, 117(20): 202102. [26] WEI Q, LIN F, WANG R Z, et al. Heteroepitaxy growth of single crystal diamond on Ir/Pd/Al2O3 (11-20) substrate[J]. Materials Letters, 2021, 303: 130483. [27] FAN L S, JACOBS C B, ROULEAU C M, et al. Stabilizing Ir(001) epitaxy on yttria-stabilized zirconia using a thin Ir seed layer grown by pulsed laser deposition[J]. Crystal Growth & Design, 2017, 17(1): 89-94. [28] FUJISAKI T, TACHIKI M, TANIYAMA N, et al. Fabrication of heteroepitaxial diamond thin films on Ir(001)/MgO(001) substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 478-481. [29] FUJISAKI T, TACHIKI M, TANIYAMA N, et al. Initial growth of heteroepitaxial diamond on Ir (001)/MgO (001) substrates using antenna-edge-type microwave plasma assisted chemical vapor deposition[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 246-250. [30] HÖRMANN F, ROLL H, SCHRECK M, et al. Epitaxial Ir layers on SrTiO3 as substrates for diamond nucleation: deposition of the films and modification in the CVD environment[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 256-261. [31] ARNAULT J C, SCHULL G, MERMOUX M, et al. BEN-HFCVD effects on diamond nucleation on iridium: a Raman imaging study[J]. Physica Status Solidi (a), 2005, 202(11): 2073-2078. [32] GSELL S, BAUER T, GOLDFUß J, et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers[J]. Applied Physics Letters, 2004, 84(22): 4541-4543. [33] FISCHER M, GSELL S, SCHRECK M, et al. Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single-crystal diamond[J]. Diamond and Related Materials, 2008, 17(7/8/9/10): 1035-1038. [34] BAUER T, GSELL S, SCHRECK M, et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 314-317. [35] WEI Q, NIU G, WANG R Z, et al. Heteroepitaxy of single crystal diamond on Ir buffered KTaO3 (001) substrates[J]. Applied Physics Letters, 2021, 119(9): 092104. [36] WHITFIELD M D, JACKMAN R B, FOORD J S. Spatially resolved optical emission spectroscopy of the secondary glow observed during biasing of a microwave plasma[J]. Vacuum, 2000, 56(1): 15-23. [37] REGMI M, MORE K, ERES G. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2012, 23: 28-33. [38] SCHRECK M, SCHURY A, HÖRMANN F, et al. Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: experimental results and numerical simulations[J]. Journal of Applied Physics, 2002, 91(2): 676-685. [39] WUU D S, WU H W, CHEN S T, et al. Defect reduction of laterally regrown GaN on GaN/patterned sapphire substrates[J]. Journal of Crystal Growth, 2009, 311(10): 3063-3066. [40] WASHIYAMA S, MITA S, SUZUKI K, et al. Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001)[J]. Applied Physics Express, 2011, 4(9): 095502. [41] ANDO Y, KAMANO T, SUZUKI K, et al. Epitaxial lateral overgrowth of diamonds on iridium by patterned nucleation and growth method[J]. Japanese Journal of Applied Physics, 2012, 51(9R): 090101. [42] ICHIKAWA K, KODAMA H, SUZUKI K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir[J]. Diamond and Related Materials, 2017, 72: 114-118. [43] ICHIKAWA K, KURONE K, KODAMA H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir[J]. Diamond and Related Materials, 2019, 94: 92-100. [44] TANG Y H, GOLDING B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth[J]. Applied Physics Letters, 2016, 108(5): 052101. [45] MEHMEL L, ISSAOUI R, BRINZA O, et al. Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates[J]. Applied Physics Letters, 2021, 118(6): 061901. [46] AIDA H, KIM S W, IKEJIRI K, et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles[J]. Applied Physics Express, 2016, 9(3): 035504. [47] NAGAI M, NAKANISHI K, TAKAHASHI H, et al. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour[J]. Scientific Reports, 2018, 8(1): 1-8. [48] KANEKO J H, FUJITA F, KONNO Y, et al. Growth and evaluation of self-standing CVD diamond single crystals on off-axis (001) surface of HP/HT type IIa substrates[J]. Diamond and Related Materials, 2012, 26: 45-49. [49] KLEIN O, MAYR M, FISCHER M, et al. Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films[J]. Diamond and Related Materials, 2016, 65: 53-58. [50] KIM S W, TAKAYA R, HIRANO S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (11-20) misoriented substrate by step-flow mode[J]. Applied Physics Express, 2021, 14(11): 115501. [51] OHMAGARI S, YAMADA H, TSUBOUCHI N, et al. Large reduction of threading dislocations in diamond by hot-filament chemical vapor deposition accompanying W incorporations[J]. Applied Physics Letters, 2018, 113(3): 032108. [52] SITTIMART P, OHMAGARI S, YOSHITAKE T. Enhanced in-plane uniformity and breakdown strength of diamond Schottky barrier diodes fabricated on heteroepitaxial substrates[J]. Japanese Journal of Applied Physics, 2021, 60(SB): SBBD05. [53] ALEKSOV A, KUBOVIC M, KAEB N, et al. Diamond field effect transistors: concepts and challenges[J]. Diamond and Related Materials, 2003, 12(3/4/5/6/7): 391-398. [54] MAIER F, RIEDEL M, MANTEL B, et al. Origin of surface conductivity in diamond[J]. Physi Rev Lett, 2000,85(16): 3472. [55] KASU M, HIRAMA K, HARADA K, et al. Study on capacitance-voltage characteristics of diamond field-effect transistors with NO2 hole doping and Al2O3 gate insulator layer[J]. Japanese Journal of Applied Physics, 2016, 55(4): 041301. [56] TAKAGI Y, SHIRAISHI K, KASU M, et al. Mechanism of hole doping into hydrogen terminated diamond by the adsorption of inorganic molecule[J]. Surface Science, 2013, 609: 203-206. [57] CRAWFORD K G, CAO L, QI D C, et al. Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability[J]. Applied Physics Letters, 2016, 108(4): 042103. [58] ZHANG J F, REN Z Y, ZHANG J C, et al. Characterization and mobility analysis of MoO3-gated diamond MOSFET[J]. Japanese Journal of Applied Physics, 2017, 56(10): 100301. [59] CRAWFORD K G, MAINI I, MACDONALD D A, et al. Surface transfer doping of diamond: a review[J]. Progress in Surface Science, 2021, 96(1): 100613. [60] SAHA N C, OISHI T, KIM S, et al. 145-MW/cm2 heteroepitaxial diamond MOSFETs with NO2 p-type doping and an Al2O3 passivation layer[J]. IEEE Electron Device Letters, 2020, 41(7): 1066-1069. [61] SAHA N C, KIM S W, OISHI T, et al. 345-MW/cm2 2608-V NO2 p-type doped diamond MOSFETs with an Al2O3 passivation overlayer on heteroepitaxial diamond[J]. IEEE Electron Device Letters, 2021, 42(6): 903-906. [62] CHEN G Q, WANG W, LIN F, et al. Electrical characteristics of diamond MOSFET with 2DHG on a heteroepitaxial diamond substrate[J]. Materials, 2022, 15(7): 2557. [63] SAHA N C, KIM S W, OISHI T, et al. 875-MW/cm2 low-resistance NO2 p-type doped chemical mechanical planarized diamond MOSFETs[J]. IEEE Electron Device Letters, 2022, 43(5): 777-780. [64] SAHA N C, KIM S W, OISHI T, et al. 3326-V modulation-doped diamond MOSFETs[J]. IEEE Electron Device Letters, 2022, 43(8): 1303-1306. [65] SAHA N C, KIM S W, KOYAMA K, et al. 3659-V NO2 p-type doped diamond MOSFETs on misoriented heteroepitaxial diamond substrates[J]. IEEE Electron Device Letters, 2023, 44(1): 112-115. [66] TAKEUCHI D, MAKINO T, KATO H, et al. Free exciton luminescence from a diamond p-i-n diode grown on a substrate produced by heteroepitaxy[J]. Physica Status Solidi (a), 2014, 211(10): 2251-2256. [67] KAWASHIMA H, NOGUCHI H, MATSUMOTO T, et al. Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates[J]. Applied Physics Express, 2015, 8(10): 104103. [68] ARNAULT J C, LEE K H, DELCHEVALRIE J, et al. Epitaxial diamond on Ir/SrTiO3/Si (001): from sequential material characterizations to fabrication of lateral Schottky diodes[J]. Diamond and Related Materials, 2020, 105: 107768. [69] KWAK T, LEE J, CHOI U, et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate[J]. Diamond and Related Materials, 2021, 114: 108335. [70] WEIPPERT J, REINKE P, BENKHELIFA F, et al. Pseudovertical Schottky diodes on heteroepitaxially grown diamond[J]. Crystals, 2022, 12(11): 1626. [71] KWAK T, HAN S H, CHOI U, et al. Diamond Schottky barrier diode fabricated on high-crystalline quality misoriented heteroepitaxial (001) diamond substrate[J]. Diamond and Related Materials, 2023, 133: 109750. [72] SAHA N C, IRIE Y, SEKI Y, et al. 1651-V all-ion-implanted Schottky barrier diode on heteroepitaxial diamond with 3.6×105 on/off ratio[J]. IEEE Electron Device Letters, 2023, 44(2): 293-296. |