人工晶体学报 ›› 2023, Vol. 52 ›› Issue (6): 945-959.
所属专题: 半导体薄膜与外延技术
乔鹏飞1, 刘康1, 代兵1, 刘本建1, 张森1, 张晓晖1, 朱嘉琦1,2
收稿日期:
2023-03-15
出版日期:
2023-06-15
发布日期:
2023-06-30
通信作者:
刘 康,博士,副教授。E-mail:newliuk@163.com; 朱嘉琦,博士,教授。E-mail:zhujq@hit.edu.cn
作者简介:
乔鹏飞(1996—),男,山东省人,博士研究生。E-mail:20B918142@stu.hit.edu.cn
基金资助:
QIAO Pengfei1, LIU Kang1, DAI Bing1, LIU Benjian1, ZHANG Sen1, ZHANG Xiaohui1, ZHU Jiaqi1,2
Received:
2023-03-15
Online:
2023-06-15
Published:
2023-06-30
摘要: 5G 通信、能源互联网、新能源汽车、量子技术等高精尖领域对半导体的性能提出了新的更高的要求。第四代半导体金刚石因具有优异的物理化学性能被誉为“终极半导体”,被认为是制备下一代高功率、高频、高温及低功率损耗电子器件最理想的材料。而浅n型掺杂的技术瓶颈一定程度阻碍了金刚石半导体应用的发展。表面终端研究为金刚石功能化的发展提供了新的策略,金刚石通过表面终端实现了场效应晶体管、肖特基二极管、日盲紫外探测器、电子发射器件和近表面色心调控等重要应用,而表面终端发挥作用的机理与其能带结构特点密不可分。本文综述了几种常见终端的能带研究方法,分析其能带的结构特点,结合特点介绍其发挥作用的机理,并进行了总结和展望。
中图分类号:
乔鹏飞, 刘康, 代兵, 刘本建, 张森, 张晓晖, 朱嘉琦. 终端金刚石能带结构与物理性能的研究进展[J]. 人工晶体学报, 2023, 52(6): 945-959.
QIAO Pengfei, LIU Kang, DAI Bing, LIU Benjian, ZHANG Sen, ZHANG Xiaohui, ZHU Jiaqi. Research Progress on Energy Band Structure and Physical Properties of Terminated Diamond[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 945-959.
[1] PERNEGGER H, ROE S, WEILHAMMER P, et al. Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique[J]. Journal of Applied Physics, 2005, 97(7): 073704. [2] SHU G Y, DAI B, BOLSHAKOV A, et al. Coessential-connection by microwave plasma chemical vapor deposition: a common process towards wafer scale single crystal diamond[J]. Functional Diamond, 2021, 1(1): 47-62. [3] LIAO M Y, SANG L W, TERAJI T, et al. Comprehensive investigation of single crystal diamond deep-ultraviolet detectors[J]. Japanese Journal of Applied Physics, 2012, 51(9R): 090115. [4] LAGRANGE J P, DENEUVILLE A, GHEERAERT E. Activation energy in low compensated homoepitaxial boron-doped diamond films 1[J]. Diamond and Related Materials, 1998, 7(9): 1390-1393. [5] PINAULT M A, BARJON J, KOCINIEWSKI T, et al. The n-type doping of diamond: present status and pending questions[J]. Physica B: Condensed Matter, 2007, 401/402: 51-56. [6] SASAMA Y, KAGEURA T, IMURA M, et al. High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures[J]. Nature Electronics, 2021, 5(1): 37-44. [7] 刘峰斌, 金秀婷, 张 畅. 不同金属/氢终端金刚石(100)界面结构的第一性原理研究[J]. 有色金属工程, 2020, 10(1): 21-25. LIU F B, JIN X T, ZHANG C. First-principles investigation on the interface structure of different metal/hydrogen-terminated diamond(100)[J]. Nonferrous Metals Engineering, 2020, 10(1): 21-25 (in Chinese). [8] SCHENK A K, RIETWYK K J, TADICH A, et al. High resolution core level spectroscopy of hydrogen-terminated (100) diamond[J]. Journal of Physics: Condensed Matter, 2016, 28(30): 305001. [9] TAKEUCHI D, KATO H, RI G S, et al. Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces[J]. Applied Physics Letters, 2005, 86(15): 152103. [10] KONO S, SAITOU T, KAWATA H, et al. Characteristic energy band values and electron attenuation length of a chemical-vapor-deposition diamond (001) 2×1 surface[J]. Surface Science, 2009, 603(6): 860-866. [11] ROBERTSON J, RUTTER M J. Band diagram of diamond and diamond-like carbon surfaces[J]. Diamond and Related Materials, 1998, 7(2/3/4/5): 620-625. [12] SQUE S J, JONES R, BRIDDON P R. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces[J]. Physical Review B, 2006, 73(8): 085313. [13] BAUMANN P K, NEMANICH R J. Surface cleaning, electronic states and electron affinity of diamond (100), (111) and (110) surfaces[J]. Surface Science, 1998, 409(2): 320-335. [14] TAKEUCHI D, RI S G, KATO H, et al. Negative electron affinity on hydrogen terminated diamond[J]. Physica Status Solidi (A), 2005, 202(11): 2098-2103. [15] CUI J B, RISTEIN J, LEY L. Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface[J]. Physical Review Letters, 1998, 81(2): 429-432. [16] MAIER F, RISTEIN J, LEY L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces[J]. Physical Review B, 2001, 64(16): 165411. [17] NEBEL C E, REZEK B, ZRENNER A. Electronic properties of the 2D-hole accumulation layer on hydrogen terminated diamond[J]. Diamond and Related Materials, 2004, 13(11/12): 2031-2036. [18] NEBEL C E, REZEK B, ZRENNER A. 2D-hole accumulation layer in hydrogen terminated diamond[J]. Physica Status Solidi (A), 2004, 201(11): 2432-2438. [19] KÖCK F A M, GARGUILO J M, BROWN B, et al. Enhanced low-temperature thermionic field emission from surface-treated N-doped diamond films[J]. Diamond and Related Materials, 2002, 11(3/4/5/6): 774-779. [20] WAN G, CATTELAN M, CROOT A, et al. Spectroscopic insight of low energy electron emission from diamond surfaces[J]. Carbon, 2021, 185: 376-383. [21] REZEK B, NEBEL C E, STUTZMANN M. Hydrogenated diamond surfaces studied by atomic and Kelvin force microscopy[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 740-745. [22] TSUGAWA K, KITATANI K, NODA H, et al. High-preformance diamond surface-channel field-effect transistors and their operation mechanism[J]. Diamond and Related Materials, 1999, 8(2/3/4/5): 927-933. [23] HAYASHI K, YAMANAKA S, WATANABE H, et al. Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films[J]. Journal of Applied Physics, 1997, 81(2): 744-753. [24] DENISENKO A, ALEKSOV A, PRIBIL A, et al. Hypothesis on the conductivity mechanism in hydrogen terminated diamond films[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 1138-1142. [25] MAIER F, RIEDEL M, MANTEL B, et al. Origin of surface conductivity in diamond[J]. Physical Review Letters, 2000, 85(16): 3472-3475. [26] RIEDEL M, RISTEIN J, LEY L. Recovery of surface conductivity of H-terminated diamond after thermal annealing in vacuum[J]. Physical Review B, 2004, 69(12): 125338. [27] CHAKRAPANI V, ANGUS J C, ANDERSON A B, et al. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple[J]. Science, 2007, 318(5855): 1424-1430. [28] GI R S, MIZUMASA T, AKIBA Y, et al. Formation mechanism of p-type surface conductive layer on deposited diamond films[J]. Japanese Journal of Applied Physics, 1995, 34(10R): 5550. [29] SHIRAFUJI J, SUGINO T. Electrical properties of diamond surfaces[J]. Diamond and Related Materials, 1996, 5(6/7/8): 706-713. [30] PIANTANIDA G, BRESKIN A, CHECHIK R, et al. Effect of moderate heating on the negative electron affinity and photoyield of air-exposed hydrogen-terminated chemical vapor deposited diamond[J]. Journal of Applied Physics, 2001, 89(12): 8259-8264. [31] GI R, TASHIRO K, TANAKA S, et al. Hall effect measurements of surface conductive layer on undoped diamond films in NO2 and NH3 atmospheres[J]. Japanese Journal of Applied Physics, 1999, 38(6R): 3492. [32] SATO H, KASU M. Maximum hole concentration for Hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2[J]. Diamond and Related Materials, 2013, 31: 47-49. [33] RISTEIN J, STROBEL P, LEY L. Surface conductivity of diamond: a novel doping mechanism[M]//Advances in Science and Technology. Stafa: Trans Tech Publications Ltd., 2006: 93-102. [34] STROBEL P, RIEDEL M, RISTEIN J, et al. Surface transfer doping of diamond[J]. Nature, 2004, 430(6998): 439-441. [35] EDMONDS M T, WANKE M, TADICH A, et al. Surface transfer doping of hydrogen-terminated diamond by C60F48: energy level scheme and doping efficiency[J]. The Journal of Chemical Physics, 2012, 136(12): 124701. [36] QI D C, CHEN W, GAO X Y, et al. Surface transfer doping of diamond (100) by tetrafluoro-tetracyanoquinodimethane[J]. Journal of the American Chemical Society, 2007, 129(26): 8084-8085. [37] CRAWFORD K G, CAO L A, QI D C, et al. Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability[J]. Applied Physics Letters, 2016, 108(4): 042103. [38] MCGHEE J, GEORGIEV V P. Simulation study of surface transfer doping of hydrogenated diamond by MoO3 and V2O5 metal oxides[J]. Micromachines, 2020, 11(4): 433. [39] RUSSELL S A O, CAO L A, QI D C, et al. Surface transfer doping of diamond by MoO3: a combined spectroscopic and Hall measurement study[J]. Applied Physics Letters, 2013, 103(20): 202112. [40] XING K J, XIANG Y, JIANG M, et al. MoO3 induces p-type surface conductivity by surface transfer doping in diamond[J]. Applied Surface Science, 2020, 509: 144890. [41] TORDJMAN M, WEINFELD K, KALISH R. Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3[J]. Applied Physics Letters, 2017, 111(11): 111601. [42] VERONA C, CICCOGNANI W, COLANGELI S, et al. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators[J]. Journal of Applied Physics, 2016, 120(2): 025104. [43] FU Y, XU R M, YU X X, et al. Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature[J]. Chinese Physics B, 2021, 30(5): 058101. [44] LIU B J, LIU K, ZHANG S, et al. Self-powered solar-blind UV detectors based on O-terminated vertical diamond Schottky diode with low dark current, high detectivity, and high signal-to-noise ratio[J]. ACS Applied Electronic Materials, 2022, 4(12): 5996-6003. [45] ZHAO D, HU C, LIU Z C, et al. Diamond MIP structure Schottky diode with different drift layer thickness[J]. Diamond and Related Materials, 2017, 73: 15-18. [46] TWITCHEN D J, WHITEHEAD A J, COE S E, et al. High-voltage single-crystal diamond diodes[J]. IEEE Transactions on Electron Devices, 2004, 51(5): 826-828. [47] LIU B J, LIU K, RALCHENKO V, et al. Effect of americium-241 source activity on total conversion efficiency of diamond alpha-voltaic battery[J]. International Journal of Energy Research, 2019, 43(11): 6038-6044. [48] BORMASHOV V, TROSCHIEV S, VOLKOV A, et al. Development of nuclear microbattery prototype based on Schottky barrier diamond diodes[J]. Physica Status Solidi (a), 2015, 212(11): 2539-2547. [49] BALDUCCI A, MARINELLI M, MILANI E, et al. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition[J]. Applied Physics Letters, 2005, 86(19): 193509. [50] LIU Z C, LI F N, WANG W, et al. Effect of depth of buried-In tungsten electrodes on single crystal diamond photodetector[J]. MRS Advances, 2016, 1(16): 1099-1104. [51] LIU K, ZHANG S, LIU B J, et al. Investigating the energetic band diagrams of oxygen-terminated CVD grown e6 electronic grade diamond[J]. Carbon, 2020, 169: 440-445. [52] TACHIKI M, KAIBARA Y, SUMIKAWA Y, et al. Characterization of locally modified diamond surface using Kelvin probe force microscope[J]. Surface Science, 2005, 581(2/3): 207-212. [53] MASUZAWA T, NEO Y, MIMURA H, et al. Electron emission mechanism of heavily phosphorus-doped diamond with oxidized surface[J]. Physica Status Solidi (a), 2019, 216(7): 1801025. [54] ZHENG J. Oxygen-induced surface state on diamond (100)[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 500-505. [55] O′DONNELL K M, MARTIN T L, EDMONDS M T, et al. Photoelectron emission from lithiated diamond[J]. Physica Status Solidi (A), 2014, 211(10): 2209-2222. [56] ITOH Y, SUMIKAWA Y, UMEZAWA H, et al. Trapping mechanism on oxygen-terminated diamond surfaces[J]. Applied Physics Letters, 2006, 89(20): 203503. [57] TERAJI T, GARINO Y, KOIDE Y, et al. Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment[J]. Journal of Applied Physics, 2009, 105(12): 126109. [58] GARINO Y, TERAJI T, KOIZUMI S, et al. P-type diamond Schottky diodes fabricated by vacuum ultraviolet light/ozone surface oxidation: comparison with diodes based on wet-chemical oxidation[J]. Physica Status Solidi (a), 2009, 206(9): 2082-2085. [59] ZHAO D, LIU Z C, WANG J, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/fluorine-terminated diamond[J]. Applied Surface Science, 2018, 457: 411-416. [60] YAMANO H, KAWAI S, KATO K, et al. Charge state stabilization of shallow nitrogen vacancy centers in diamond by oxygen surface modification[J]. Japanese Journal of Applied Physics, 2017, 56(4S): 04CK08. [61] ZHANG S, LIU K, LIU B J, et al. Surface potential pinning study for oxygen terminated IIa diamond[J]. Carbon, 2023, 205: 69-75. [62] LIU K, WANG W H, DAI B, et al. Impact of UV spot position on forward and reverse photocurrent symmetry in a gold-diamond-gold detector[J]. Applied Physics Letters, 2018, 113(2): 023501. [63] ZHANG X H, LIU K, LIU B J, et al. Phenomenon of photo-regulation on gold/diamond Schottky barriers and its detector applications[J]. Applied Physics Letters, 2023, 122(6): 062106. [64] LIU K, LIU B J, ZHAO J W, et al. Application of back bias to interdigital-electrode structured diamond UV detector showing enhanced responsivity[J]. Sensors and Actuators A: Physical, 2019, 290: 222-227. [65] WANG L X, CHEN X K, WU G, et al. The influence of grain boundary on time response of diamond ultraviolet photo-detector[J]. Acta Physica Sinica, 2012, 61(3): 038101. [66] LIAO M Y. Progress in semiconductor diamond photodetectors and MEMS sensors[J]. Functional Diamond, 2021, 1(1): 29-46. [67] HIRAMA K, SATO H, HARADA Y, et al. Diamond field-effect transistors with 1.3 A/mm drain current density by Al2O3 passivation layer[J]. Japanese Journal of Applied Physics, 2012, 51(9R): 090112. [68] YU X X, ZHOU J J, QI C J, et al. A high frequency hydrogen-terminated diamond MISFET with ft/fmax of 70/80 GHz[J]. IEEE Electron Device Letters, 2018, 39(9): 1373-1376. [69] SCHENK A, TADICH A, SEAR M, et al. Formation of a silicon terminated (100) diamond surface[J]. Applied Physics Letters, 2015, 106(19): 191603. [70] SCHENK A K, TADICH A, SEAR M J, et al. The surface electronic structure of silicon terminated (100) diamond[J]. Nanotechnology, 2016, 27(27): 275201. [71] SCHENK A K, SEAR M J, TADICH A, et al. Oxidation of the silicon terminated (100) diamond surface[J]. Journal of Physics: Condensed Matter, 2017, 29(2): 025003. [72] BI T, CHANG Y H, FEI W X, et al. C-Si bonded two-dimensional hole gas diamond MOSFET with normally-off operation and wide temperature range stability[J]. Carbon, 2021, 175: 525-533. [73] FEI W X, BI T, IWATAKI M, et al. Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator[J]. Applied Physics Letters, 2020, 116(21): 212103. [74] ZHU X H, BI T, YUAN X L, et al. C-Si interface on SiO2/(111) diamond p-MOSFETs with high mobility and excellent normally-off operation[J]. Applied Surface Science, 2022, 593: 153368. [75] QIAO P F, LIU K, ZHANG S, et al. Origin of two-dimensional hole gas formation on Si-treated diamond surfaces: surface energy band diagram perspective[J]. Applied Surface Science, 2022, 584: 152560. [76] HIMPSEL F J, KNAPP J A, VANVECHTEN J A, et al. Quantum photoyield of diamond(111): a stable negative-affinity emitter[J]. Physical Review B, 1979, 20(2): 624-627. [77] TAKEUCHI D, RIEDEL M, RISTEIN J, et al. Surface band bending and surface conductivity of hydrogenated diamond[J]. Physical Review B, 2003, 68(4): 041304. [78] FOORD J S, HIAN L C, JACKMAN R B. An investigation of the surface reactivity of diamond photocathodes with molecular and atomic oxygen species[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 710-714. [79] O′DONNELL K M, EDMONDS M T, RISTEIN J, et al. Diamond surfaces with air-stable negative electron affinity and giant electron yield enhancement[J]. Advanced Functional Materials, 2013, 23(45): 5608-5614. [80] O′DONNELL K M, EDMONDS M T, TADICH A, et al. Extremely high negative electron affinity of diamond via magnesium adsorption[J]. Physical Review B, 2015, 92(3): 035303. [81] Van der WEIDE J. Schottky barrier height and negative electron affinity of titanium on (111) diamond[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1992, 10(4): 1940. [82] FURTHMÜLLER J, HAFNER J, KRESSE G. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces[J]. Physical Review B, 1996, 53(11): 7334-7351. [83] RUTTER M J, ROBERTSON J. Ab initio calculation of electron affinities of diamond surfaces[J]. Physical Review B, 1998, 57(15): 9241-9245. [84] MARTIN T L. Lithium oxygen termination as a negative electron affinity surface on diamond: a computational and photoemission study[D]. Bristol, South West England, UK: University of Bristol, 2011. [85] O’DONNELL K M, MARTIN T L, FOX N A, et al. Ab initio investigation of lithium on the diamond C(100) surface[J]. Physical Review B, 2010, 82(11): 115303. [86] TIWARI A K, GOSS J P, BRIDDON P R, et al. Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films[J]. EPL (Europhysics Letters), 2014, 108(4): 46005. [87] JAMES M C, MAY P W, ALLAN N L. Ab initio study of negative electron affinity from light metals on the oxygen-terminated diamond (111) surface[J]. Journal of Physics: Condensed Matter, 2019, 31(29): 295002. [88] JAMES M C, CROOT A, MAY P W, et al. Negative electron affinity from aluminium on the diamond (100) surface: a theoretical study[J]. Journal of Physics: Condensed Matter, 2018, 30(23): 235002. [89] O’DONNELL K M, MARTIN T L, ALLAN N L. Light metals on oxygen-terminated diamond (100): structure and electronic properties[J]. Chemistry of Materials, 2015, 27(4): 1306-1315. [90] BAR-GILL N, PHAM L M, JARMOLA A, et al. Solid-state electronic spin coherence time approaching one second[J]. Nature Communications, 2013, 4: 1743. [91] RONDIN L, TETIENNE J P, HINGANT T, et al. Magnetometry with nitrogen-vacancy defects in diamond[J]. Reports on Progress in Physics, 2014, 77(5): 056503. [92] KAVIANI M, DEÁK P, ARADI B, et al. Proper surface termination for luminescent near-surface NV centers in diamond[J]. Nano Letters, 2014, 14(8): 4772-4777. [93] CHANDRAN M, SHASHA M, MICHAELSON S, et al. Nitrogen termination of single crystal (100) diamond surface by radio frequency N2 plasma process: an in-situ X-ray photoemission spectroscopy and secondary electron emission studies[J]. Applied Physics Letters, 2015, 107(11): 111602. [94] GONG M M, WANG Q L, GAO N, et al. Structural and electronic properties of nitrogen-terminated diamond (100) surfaces[J]. Diamond and Related Materials, 2021, 120: 108601. [95] SHEN W, PAN Y H, SHEN S N, et al. Electron affinity of boron-terminated diamond (001) surfaces: a density functional theory study[J]. Journal of Materials Chemistry C, 2019, 7(31): 9756-9765. [96] SUN Z L, YANG M C, WANG X T, et al. Boron-terminated diamond (100) surfaces with promising structural and electronic properties[J]. Physical Chemistry Chemical Physics, 2020, 22(15): 8060-8066. |
[1] | 高妍, 董海涛, 张小可, 冯文然. (AlxGa1-x)2O3结构、电子和光学性质的第一性原理研究[J]. 人工晶体学报, 2023, 52(9): 1674-1680. |
[2] | 李宗平, 程大猛. 金刚石线锯锯切β-Ga2O3晶体应力场分析[J]. 人工晶体学报, 2023, 52(8): 1378-1385. |
[3] | 陈根强, 赵浠翔, 于众成, 李政, 魏强, 林芳, 王宏兴. 异质外延单晶金刚石及其相关电子器件的研究进展[J]. 人工晶体学报, 2023, 52(6): 931-944. |
[4] | 简小刚, 张毅, 梁晓伟, 姚文山. 硫硒元素掺杂金刚石表面的生长位点研究[J]. 人工晶体学报, 2023, 52(6): 1120-1127. |
[5] | 杨帆, 许并社, 董海亮, 张爱琴, 梁建, 贾志刚. AlGaN/GaN纳米异质结构中的二维电子气密度研究[J]. 人工晶体学报, 2023, 52(6): 1136-1144. |
[6] | 彭博, 李奇, 张舒淼, 樊叔维, 王若铮, 王宏兴. 金刚石肖特基二极管的研究进展[J]. 人工晶体学报, 2023, 52(5): 732-745. |
[7] | 吴锐文, 宋华平, 杨军伟, 屈红霞, 赖晓芳. 基于聚氨酯垫的4H-SiC单晶衬底研磨性质研究[J]. 人工晶体学报, 2023, 52(5): 759-765. |
[8] | 武成, 朱昭捷, 李坚富, 涂朝阳, 吕佩文, 王燕. 反应磁控溅射制备h-BN薄膜及其日盲紫外探测器[J]. 人工晶体学报, 2023, 52(5): 798-804. |
[9] | 屈鹏霏, 金鹏, 周广迪, 王镇, 许敦洲, 吴巨, 郑红军, 王占国. 单晶金刚石异质外延用铱复合衬底研究现状[J]. 人工晶体学报, 2023, 52(5): 857-877. |
[10] | 白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉. 多晶金刚石衬底范德瓦耳斯外延GaN薄膜[J]. 人工晶体学报, 2023, 52(5): 901-908. |
[11] | 李斌, 胡秀飞, 杨旖秋, 王英楠, 谢雪健, 彭燕, 杨祥龙, 王希玮, 胡小波, 徐现刚, 冯志红. 单晶金刚石声子非简谐衰减效应研究[J]. 人工晶体学报, 2023, 52(3): 442-451. |
[12] | 刘俊杰, 关春龙, 易剑, 宋惠, 江南, 西村一仁. 半导体用大尺寸单晶金刚石衬底制备及加工研究现状[J]. 人工晶体学报, 2023, 52(10): 1733-1744. |
[13] | 贾元波, 满卫东, 伍正新, 梁凯, 林志东. 二氧化碳对同质外延生长单晶金刚石内应力的影响[J]. 人工晶体学报, 2023, 52(1): 34-40. |
[14] | 张瑞, 于文强. 高温扩散法制备B-S共掺杂单晶金刚石[J]. 人工晶体学报, 2023, 52(1): 41-47. |
[15] | 张玺, 朱如忠, 张序清, 王明华, 高煜, 王蓉, 杨德仁, 皮孝东. 磨料形貌及分散介质对4H碳化硅晶片研磨质量的影响研究[J]. 人工晶体学报, 2023, 52(1): 48-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||