人工晶体学报 ›› 2023, Vol. 52 ›› Issue (6): 982-996.
所属专题: 半导体薄膜与外延技术
宋长坤, 黄晓莹, 陈英鑫, 喻颖, 余思远
收稿日期:
2023-04-24
出版日期:
2023-06-15
发布日期:
2023-06-30
通信作者:
喻 颖,博士,副教授。E-mail:yuying26@mail.sysu.edu.cn
作者简介:
宋长坤(1995—),男,江西省人,博士研究生。E-mail:songchk3@mail2.sysu.edu.cn
基金资助:
SONG Changkun, HUANG Xiaoying, CHEN Yingxin, YU Ying, YU Siyuan
Received:
2023-04-24
Online:
2023-06-15
Published:
2023-06-30
摘要: Ⅲ-Ⅴ化合物半导体外延单量子点具有类原子的分立能级结构,能够按需产生单光子和纠缠多光子态,而且可以直接与成熟的集成光子技术结合,因此被认为是制备高品质固态量子光源、构建可扩展性量子网络最有潜力的固态量子体系之一。本综述的重点是介绍高品质单量子点的分子束外延生长及精确调控的方法。首先介绍了晶圆级均匀单量子点的分子束外延生长,并探讨了调控浸润层态和量子点对称性的生长方法;接下来概述了利用应变层调控量子点发射波长的方法,总结了几种常见的电调控单个量子点器件的设计原理;最后讨论了最近为实现优异量子点光源而开发的液滴外延生长技术。
中图分类号:
宋长坤, 黄晓莹, 陈英鑫, 喻颖, 余思远. 半导体单量子点的分子束外延生长及调控[J]. 人工晶体学报, 2023, 52(6): 982-996.
SONG Changkun, HUANG Xiaoying, CHEN Yingxin, YU Ying, YU Siyuan. Modulation of Semiconductor Single Quantum Dots Using Molecular Beam Epitaxy[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 982-996.
[1] NIELSEN M A, CHUANG I, GROVER L K. Quantum computation and quantum information[J]. American Journal of Physics, 2002, 70(5): 558-559. [2] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th Annual Symposium on Foundations of Computer Science. November 20-22, 1994, Santa Fe, NM, USA. IEEE, 2002: 124-134. [3] KUPKO T, VON HELVERSEN M, RICKERT L, et al. Tools for the performance optimization of single-photon quantum key distribution[J]. NPJ Quantum Information, 2020, 6: 29. [4] SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J, et al. The security of practical quantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3): 1301-1350. [5] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579. [6] KORZH B, LIM C C W, HOULMANN R, et al. Provably secure and practical quantum key distribution over 307 km of optical fibre[J]. Nature Photonics, 2015, 9(3): 163-168. [7] WALBORN S P, PIMENTEL A H, DAVIDOVICH L, et al. Quantum-enhanced sensing from hyperentanglement[J]. Physical Review A, 2018, 97: 010301. [8] AHARONOVICH I, ENGLUND D, TOTH M. Solid-state single-photon emitters[J]. Nature Photonics, 2016, 10(10): 631-641. [9] DING X, HE Y, DUAN Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 2016, 116(2): 020401. [10] WANG H, DUAN Z C, LI Y H, et al. Near-transform-limited single photons from an efficient solid-state quantum emitter[J]. Physical Review Letters, 2016, 116(21): 213601. [11] DIETRICH C P, FIORE A, THOMPSON M G, et al. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits[J]. Laser & Photonics Reviews, 2016, 10(6): 857. [12] ZHAO T M, CHEN Y, YU Y, et al. Advanced technologies for quantum photonic devices based on epitaxial quantum dots[J]. Advanced Quantum Technologies, 2020, 3(2): 1900034. [13] ZHOU X Y, ZHAI L A, LIU J. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies[J]. Photonics Insights, 2022, 1(2): R07. [14] MICHLER P, KIRAZ A, BECHER C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285. [15] STIEVATER T H, LI X Q, STEEL D G, et al. Rabi oscillations of excitons in single quantum dots[J]. Physical Review Letters, 2001, 87(13): 133603. [16] SANTORI C, FATTAL D, VUCˇKOVIC' J, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907): 594-597. [17] MULLER A, FLAGG E B, BIANUCCI P, et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity[J]. Physical Review Letters, 2007, 99(18): 187402. [18] VAMIVAKAS A N, ZHAO Y, LU C Y, et al. Erratum: spin-resolved quantum-dot resonance fluorescence[J]. Nature Physics, 2009, 5(12): 925. [19] HE Y M, HE Y, WEI Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 2013, 8(3): 213-217. [20] WANG J P, GONG M, GUO G C, et al. Towards scalable entangled photon sources with self-assembled InAs/GaAs quantum dots[J]. Physical Review Letters, 2015, 115(6): 067401. [21] MÜLLER M, BOUNOUAR S, JÖNS K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs[J]. Nature Photonics, 2014, 8(3): 224-228. [22] STEVENSON R M, YOUNG R J, ATKINSON P, et al. A semiconductor source of triggered entangled photon pairs[J]. Nature, 2006, 439(7073): 179-182. [23] HUBER D, REINDL M, COVRE DA SILVA S F, et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand[J]. Physical Review Letters, 2018, 121(3): 033902. [24] TIRANOV A, ANGELOPOULOU V, VAN DIEPEN C J, et al. Collective super- and subradiant dynamics between distant optical quantum emitters[J]. Science, 2023, 379(6630): 389-393. [25] TANG J, CAO S, GAO Y N, et al. Charge state control in single InAs/GaAs quantum dots by external electric and magnetic fields[J]. Applied Physics Letters, 2014, 105(4): 041109. [26] YU Y, SHANG X J, LI M F, et al. Single InAs quantum dot coupled to different “environments” in one wafer for quantum photonics[J]. Applied Physics Letters, 2013, 102(20): 201103. [27] KROUTVAR M, DUCOMMUN Y, HEISS D, et al. Optically programmable electron spin memory using semiconductor quantum dots[J]. Nature, 2004, 432(7013): 81-84. [28] PETTA J R, JOHNSON A C, TAYLOR J M, et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots[J]. Science, 2005, 309(5744): 2180-2184. [29] ATATÜRE M, DREISER J, BADOLATO A, et al. Quantum-dot spin-state preparation with near-unity fidelity[J]. Science, 2006, 312(5773): 551-553. [30] XU X D, YAO W, SUN B, et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy[J]. Nature, 2009, 459(7250): 1105-1109. [31] LU C Y, ZHAO Y, VAMIVAKAS A N, et al. Direct measurement of spin dynamics in InAs/GaAs quantum dots using time-resolved resonance fluorescence[J]. Physical Review B, 2010, 81(3): 035332. [32] GAO W B, FALLAHI P, TOGAN E, et al. Quantum teleportation from a propagating photon to a solid-state spin qubit[J]. Nature Communications, 2013, 4: 2744. [33] SCHWARTZ I, COGAN D, SCHMIDGALL E R, et al. Deterministic generation of a cluster state of entangled photons[J]. Science, 2016, 354(6311): 434-437. [34] KUHLMANN A V, PRECHTEL J H, HOUEL J, et al. Transform-limited single photons from a single quantum dot[J]. Nature Communications, 2015, 6: 8204. [35] PEDERSEN F T, WANG Y, OLESEN C T, et al. Near transform-limited quantum dot linewidths in a broadband photonic crystal waveguide[J]. ACS Photonics, 2020, 7(9): 2343-2349. [36] SOMASCHI N, GIESZ V, DE SANTIS L, et al. Near-optimal single-photon sources in the solid state[J]. Nature Photonics, 2016, 10(5): 340-345. [37] BART N, DANGEL C, ZAJAC P, et al. Wafer-scale epitaxial modulation of quantum dot density[J]. Nature Communications, 2022, 13: 1633. [38] TOMM N, JAVADI A, ANTONIADIS N O, et al. A bright and fast source of coherent single photons[J]. Nature Nanotechnology, 2021, 16(4): 399-403. [39] UPPU R, PEDERSEN F T, WANG Y, et al. Scalable integrated single-photon source[J]. Science Advances, 2020, 6(50): eabc8268. [40] HUANG X Y, SU R B, YANG J W, et al. Wafer-scale epitaxial low density InAs/GaAs quantum dot for single photon emitter in three-inch substrate[J]. Nanomaterials, 2021, 11(4): 930. [41] UNSLEBER S, HE Y M, GERHARDT S, et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency[J]. Optics Express, 2016, 24(8): 8539. [42] SCHIMPF C, REINDL M, BASSO BASSET F, et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks[J]. Applied Physics Letters, 2021, 118(10): 100502. [43] SEGUIN R, SCHLIWA A, RODT S, et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots[J]. Physical Review Letters, 2005, 95(25): 257402. [44] SINGH R, BESTER G. Nanowire quantum dots as an ideal source of entangled photon pairs[J]. Physical Review Letters, 2009, 103(6): 063601. [45] WALTHER T, CULLIS A G, NORRIS D J, et al. Nature of the stranski-krastanow transition during epitaxy of InGaAs on GaAs[J]. Physical Review Letters, 2001, 86(11): 2381-2384. [46] SEGUIN R, SCHLIWA A, GERMANN T D, et al. Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots[J]. Applied Physics Letters, 2006, 89(26): 263109. [47] KITAMURA S, SENSHU M, KATSUYAMA T, et al. Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ~1 μm[J]. Nanoscale Research Letters, 2015, 10: 231. [48] RUIZ-MARÍN N, REYES D F, STANOJEVIC' L, et al. Effect of the AlAs capping layer thickness on the structure of InAs/GaAs QD[J]. Applied Surface Science, 2022, 573: 151572. [49] GURIOLI M, WANG Z M, RASTELLI A, et al. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices[J]. Nature Materials, 2019, 18(8): 799-810. [50] CHUNG T H, JUSKA G, MORONI S T, et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes[J]. Nature Photonics, 2016, 10(12): 782-787. [51] LIU X M, HA N, NAKAJIMA H, et al. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy[J]. Physical Review B, 2014, 90(8): 081301. [52] GOLDMANN E, BARTHEL S, FLORIAN M, et al. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: statistical distribution and height-dependence[J]. Applied Physics Letters, 2013, 103(24): 242102. [53] HUANG X Y, YANG J W, SONG C K, et al. Self-assembled InAs/GaAs single quantum dots with suppressed InGaAs wetting layer states and low excitonic fine structure splitting for quantum memory[J]. Nanophotonics, 2022, 11(13): 3093-3100. [54] GISIN N, RIBORDY G, TITTEL W, et al. Quantum cryptography[J]. Reviews of Modern Physics, 2002, 74(1): 145-195. [55] KIMBLE H J. The quantum Internet[J]. Nature, 2008, 453(7198): 1023-1030. [56] CAO X, ZOPF M, DING F. Telecom wavelength single photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071901. [57] DUAN L M, LUKIN M D, CIRAC J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418. [58] HUA Y L, ZHOU Z Q, LI C F, et al. Quantum light storage in rare-earth-ion-doped solids[J]. Chinese Physics B, 2018, 27(2): 020303. [59] TANG J S, ZHOU Z Q, WANG Y T, et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory[J]. Nature Communications, 2015, 6: 8652. [60] XU S W, WEI Y M, SU R B, et al. Bright single-photon sources in the telecom band by deterministically coupling single quantum dots to a hybrid circular Bragg resonator[J]. Photonics Research, 2022, 10(8): B1. [61] LIN Y T, YE Y Z, FANG W. Electrically driven single-photon sources[J]. Journal of Semiconductors, 2019, 40(7): 071904. [62] YANG J Z, ZOPF M, DING F. Strain tunable quantum dot based non-classical photon sources[J]. Journal of Semiconductors, 2020, 41(1): 011901. [63] SALTER C L, STEVENSON R M, FARRER I, et al. An entangled-light-emitting diode[J]. Nature, 2010, 465(7298): 594-597. [64] BENNETT A J. Electrical control of semiconductor quantum dot single photon sources[M]//Semiconductor Nanodevices. Amsterdam: Elsevier, 2021: 295-317. [65] BENNETT A J, POOLEY M A, STEVENSON R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot[J]. Nature Physics, 2010, 6(12): 947-950. [66] XIANG Z H, HUWER J, SKIBA-SZYMANSKA J, et al. A tuneable telecom wavelength entangled light emitting diode deployed in an installed fibre network[J]. Communications Physics, 2020, 3: 121. [67] LÖBL M C, SÖLLNER I, JAVADI A, et al. Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode[J]. Physical Review B, 2017, 96(16): 165440. [68] CONTERIO M J, SKÖLD N, ELLIS D J P, et al. A quantum dot single photon source driven by resonant electrical injection[J]. Applied Physics Letters, 2013, 103(16): 162108. [69] EDIGER M, DALGARNO P A, SMITH J M, et al. Controlled generation of neutral, negatively-charged and positively-charged excitons in the same single quantum dot[J]. Applied Physics Letters, 2005, 86(21): 211909. [70] BRUNNER D, GERARDOT B D, DALGARNO P A, et al. A coherent single-hole spin in a semiconductor[J]. Science, 2009, 325(5936): 70-72. [71] KRONER M, GOVOROV A O, REMI S, et al. The nonlinear fano effect[J]. Nature, 2008, 451(7176): 311-314. [72] WANG Z M, LIANG B L, SABLON K A, et al. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100)[J]. Applied Physics Letters, 2007, 90(11): 113120. [73] WU J A, WANG Z M. Droplet epitaxy for advanced optoelectronic materials and devices[J]. Journal of Physics D: Applied Physics, 2014, 47(17): 173001. [74] HUO Y H, RASTELLI A, SCHMIDT O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate[J]. Applied Physics Letters, 2013, 102(15): 152105. [75] KEIL R, ZOPF M, CHEN Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions[J]. Nature Communications, 2017, 8: 15501. [76] HUANG X Y, ZHONG H C, YANG J W, et al. Morphological engineering of aluminum droplet etched nanoholes for symmetric GaAs quantum dot epitaxy[J]. Nanotechnology, 2020, 31(49): 495701. [77] YU Y, ZHONG H C, YANG J W, et al. Highly uniform and symmetric epitaxial InAs quantum dots embedded inside Indium droplet etched nanoholes[J]. Nanotechnology, 2019, 30(48): 485001. [78] BHATTACHARYA P, KAMATH K, PHILLIPS J, et al. Self-organized growth of In(Ga)As/GaAs quantum dots and their opto-electronic device applications[J]. Bulletin of Materials Science, 1999, 22(3): 519-529. [79] PATELLA F, ARCIPRETE F, FANFONI M, et al. Apparent critical thickness versus temperature for InAs quantum dot growth on GaAs(001)[J]. Applied Physics Letters, 2006, 88(16): 161903. [80] SAMESHIMA K, SANO T, YAMAGUCHI K. Self-formation of ultrahigh-density (1012 cm-2) InAs quantum dots on InAsSb/GaAs(001) and their photoluminescence properties[J]. Applied Physics Express, 2016, 9(7): 075501. [81] SHANG X J, XU J X, MA B, et al. Proper in deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots[J]. Chinese Physics B, 2016, 25(10): 107805. [82] GARCIA A, MATEO C M, DEFENSOR M, et al. Influence of As4 flux on the growth kinetics, structure, and optical properties of InAs/GaAs quantum dots[J]. Journal of Applied Physics, 2007, 102(7): 073526. [83] LEONARD D, POND K, PETROFF P M. Critical layer thickness for self-assembled InAs Islands on GaAs[J]. Physical Review B, 1994, 50(16): 11687-11692. [84] SAUTTER K E, VALLEJO K D, SIMMONDS P J. Strain-driven quantum dot self-assembly by molecular beam epitaxy[J]. Journal of Applied Physics, 2020, 128(3): 031101. [85] CHIA C K, ZHANG Y W, WONG S S, et al. Testing the upper limit of InAs/GaAs self-organized quantum dots density by fast growth rate[J]. Superlattices and Microstructures, 2008, 44(4/5): 420-424. [86] SUN J E, JIN P, WANG Z G. Extremely low density InAs quantum dots realized in situ on (100) GaAs[J]. Nanotechnology, 2004, 15(12): 1763-1766. [87] SASAKURA H, KAYAMORI S, ADACHI S, et al. Effect of indium-flush method on the control of photoluminescence energy of highly uniform self-assembled InAs quantum dots by slow molecular beam epitaxy growth[J]. Journal of Applied Physics, 2007, 102(1): 013515. [88] REZGUI K, OTHMEN R, CAVANNA A, et al. The improvement of InAs/GaAs quantum dot properties capped by graphene[J]. Journal of Raman Spectroscopy, 2013, 44(11): 1529-1533. [89] WANG Y, SHENG X Z, LIU Y, et al. PL of low-density InAs/GaAs quantum dots with different bimodal populations[J]. Micro & Nano Letters, 2017, 12(9): 599-604. [90] LEE J S, REN H W, SUGOU S, et al. In0.5Ga0.5As quantum dot intermixing and evaporation in GaAs capping layer growth[J]. Journal of Applied Physics, 1998, 84(12): 6686-6688. [91] TODA Y, MORIWAKI O, NISHIOKA M, et al. Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states[J]. Physical Review Letters, 1999, 82(20): 4114-4117. [92] VASANELLI A, FERREIRA R, BASTARD G. Continuous absorption background and decoherence in quantum dots[J]. Physical Review Letters, 2002, 89(21): 216804. [93] SINGH R, BESTER G. Lower bound for the excitonic fine structure splitting in self-assembled quantum dots[J]. Physical Review Letters, 2010, 104(19): 196803. [94] TIRANOV A, ORTU A, WELINSKI S, et al. Spectroscopic study of hyperfine properties in 171Yb3+∶Y2SiO5[J]. Physical Review B, 2018, 98(19): 195110. [95] OLBRICH F, KETTLER J, BAYERBACH M, et al. Temperature-dependent properties of single long-wavelength InGaAs quantum dots embedded in a strain reducing layer[J]. Journal of Applied Physics, 2017, 121(18): 184302. [96] PAUL M, KETTLER J, ZEUNER K, et al. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm[J]. Applied Physics Letters, 2015, 106(12): 122105. [97] YUAN Z L, KARDYNAL B E, STEVENSON R M, et al. Electrically driven single-photon source[J]. Science, 2002, 295(5552): 102-105. [98] BENNETT A J, PATEL R B, SKIBA-SZYMANSKA J, et al. Giant Stark effect in the emission of single semiconductor quantum dots[J]. Applied Physics Letters, 2010, 97(3): 031104. [99] WARBURTON R J, SCHÄFLEIN C, HAFT D, et al. Optical emission from a charge-tunable quantum ring[J]. Nature, 2000, 405(6789): 926-929. [100] SCHNAUBER P, SCHALL J, BOUNOUAR S, et al. Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography[J]. Nano Letters, 2018, 18(4): 2336-2342. [101] ZHANG J X, DING F, ZALLO E, et al. A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode[J]. Nano Letters, 2013, 13(12): 5808-5813. [102] GHALI M, OHTANI K, OHNO Y, et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field[J]. Nature Communications, 2012, 3: 661. [103] PRECHTEL J H, KUHLMANN A V, HOUEL J, et al. Decoupling a hole spin qubit from the nuclear spins[J]. Nature Materials, 2016, 15(9): 981-986. [104] LUDWIG A, PRECHTEL J H, KUHLMANN A V, et al. Ultra-low charge and spin noise in self-assembled quantum dots[J]. Journal of Crystal Growth, 2017, 477: 193-196. [105] BENNETT A J, UNITT D C, SEE P, et al. Microcavity single-photon-emitting diode[J]. Applied Physics Letters, 2005, 86(18): 181102. [106] DA SILVA S F C, UNDEUTSCH G, LEHNER B, et al. GaAs quantum dots grown by droplet etching epitaxy as quantum light sources[J]. Applied Physics Letters, 2021, 119(12): 120502. |
[1] | 赵军一, 刘润泽, 楼逸扬, 霍永恒. 确定性固态量子光源基础材料与器件[J]. 人工晶体学报, 2023, 52(6): 960-981. |
[2] | 李秉欣, 丁元丰, 芦红. 单晶α-Sn薄膜的外延生长及输运性质研究进展[J]. 人工晶体学报, 2023, 52(6): 1025-1035. |
[3] | 梁潇, 李思琦, 王中伟, 邵鹏飞, 陈松林, 陶涛, 谢自力, 刘斌, 陈敦军, 郑有炓, 张荣, 王科. 分子束外延高Al组分AlGaN薄膜及Si掺杂研究[J]. 人工晶体学报, 2023, 52(5): 783-790. |
[4] | 刘欢, 邵鹏飞, 陈松林, 周辉, 李思琦, 陶涛, 谢自力, 刘斌, 陈敦军, 郑有炓, 张荣, 王科. 金属调制分子束外延生长氮化铝薄膜[J]. 人工晶体学报, 2023, 52(5): 878-885. |
[5] | 任怡静, 马新国, 张锋, 陆晶晶, 张力, 王晗. BaTiO3薄膜的制备及其在电光调制器的应用[J]. 人工晶体学报, 2023, 52(4): 688-700. |
[6] | 谢景龙, 袁国文, 廖俊杰, 潘睿, 樊星, 张微微, 袁紫媛, 李晨, 高力波, 芦红. 石墨烯上远程外延Ge纳米柱[J]. 人工晶体学报, 2022, 51(9-10): 1769-1776. |
[7] | 蔡文为, 刘祥炜, 王浩, 汪建元, 郑力诚, 王永嘉, 周颖慧, 杨旭, 李金钗, 黄凯, 康俊勇. 生长气压对分子束外延β-Ga2O3薄膜特性的影响[J]. 人工晶体学报, 2022, 51(7): 1152-1157. |
[8] | 常梦琳, 樊星, 张微微, 姚金山, 潘睿, 李晨, 芦红. 利用Al/AlAs中间层调控GaAs在Si(111)上外延生长的研究[J]. 人工晶体学报, 2022, 51(11): 1815-1822. |
[9] | 蒋冲, 王一, 丁召, 黄延彬, 罗子江, 李志宏, 李耳士, 郭祥. 分子束外延生长过程中GaAs(001)表面铝液滴的扩散成核过程[J]. 人工晶体学报, 2021, 50(2): 283-289. |
[10] | 王一, 李志宏, 丁召, 杨晨, 罗子江, 王继红, 郭祥. 基于液滴外延法的Al(In)纳米结构在GaAs(001)的形成机制[J]. 人工晶体学报, 2021, 50(12): 2225-2231. |
[11] | 孔金丞, 李艳辉, 杨春章, 杨晋, 覃钢, 陈卫业, 陈逍玄, 任洋, 王善力, 胡旭, 王向前, 李雄军, 赵俊. 昆明物理研究所分子束外延碲镉汞薄膜技术进展[J]. 人工晶体学报, 2020, 49(12): 2221-2229. |
[12] | 袁紫媛, 潘睿, 夏顺吉, 魏炼, 叶佳佳, 李晨, 陈延峰, 芦红. 硅基上Si1-xGex合金的外延生长及性能研究[J]. 人工晶体学报, 2020, 49(11): 2178-2193. |
[13] | 高汉超;尹志军;张朱峰. 100 mm GaAs PHEMT外延材料生长稳定性控制研究[J]. 人工晶体学报, 2015, 44(2): 567-570. |
[14] | 郝瑞亭;郭杰;刘颖;缪彦美;徐应强. GaSb/GaAs异质结热光伏电池材料的MBE生长[J]. 人工晶体学报, 2014, 43(5): 1076-1079. |
[15] | 王科范;王珊;谷城. δ掺杂Si对InAs/GaAs量子点太阳电池的影响[J]. 人工晶体学报, 2014, 43(12): 3151-3156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||