[1] SHARMA V, CHANDEL S S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 753-767. [2] NDIAYE A, KÉBÉ C M F, CHARKI A, et al. Photovoltaic platform for investigating PV module degradation[J]. Energy Procedia, 2015, 74: 1370-1380. [3] LUO W, KHOO Y S, HACKE P, et al. Potential-induced degradation in photovoltaic modules: a critical review[J]. Energy & Environmental Science, 2017, 10(1): 43-68. [4] BEDRICH K G, LUO W, PRAVETTONI M, et al. Quantitative electroluminescence imaging analysis for performance estimation of PID-influenced PV modules[J]. IEEE Journal of Photovoltaics, 2018, 8(5): 1281-1288. [5] CAROLUS J, BREUGELMANS R, TSANAKAS J A, et al. Why and how to adapt PID testing for bifacial PV modules?[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(10): 1045-1053. [6] DHIMISH M, TYRRELL A M. Power loss and hotspot analysis for photovoltaic modules affected by potential induced degradation[J]. NPJ Materials Degradation, 2022, 6(11): 1-8. [7] 勾宪芳. 晶硅太阳能电池组件电势诱发功率衰减行为及机理的研究[D]. 北京: 北京工业大学, 2018. GOU X F. Study on the behavior and mechanism of potential induced degradation (PID) of crystalline silicon solar cell and module[D]. Beijing: Beijing University of Technology, 2018 (in Chinese). [8] Fraunhofer Center for Silicon Photovoltaics CSP. Fraunhofer CSP presents results of potential induced degradation (PID) [EB/OL]. [2015-05-13].http://www.en.csp.fraunhofer.de/press-and-events/details/id/857/. [9] 向昱任, 周春兰, 王文静. 太阳电池PID现象的数值模拟分析[J]. 太阳能学报, 2015, 36(6): 1517-1521. XIANG Y R, ZHOU C L, WANG W. Numerical simulation of potential induced degradation in silicon solar cell[J]. Acta Energiae Solaris Sinica, 2015, 36(6): 1517-1521 (in Chinese). [10] ROSS R G, MON G R, WEN L C, et al. Measurement and characterization of voltage- and current-induced degradation of thin-film photovoltaic modules[J]. Solar Cells, 1989, 27(1/2/3/4): 289-298. [11] SWANSON R, CUDZINOVIC M, DECEUSTER D, et al. The surface polarization effect in high-efficiency silicon solar cells[C]//Proceedings of the 15th International Photovoltaic Science & Engineering Conference. October 11-13, 2005, Shanghai, China, 2005: 410-413. [12] YAMAGUCHI S, MASUDA A, MARUMOTO K, et al. Mechanistic understanding of polarization-type potential-induced degradation in crystalline-silicon photovoltaic cell modules[J]. Advanced Energy and Sustainability Research, 2023, 4(4): 2200167. [13] YAMAGUCHI S, VAN AKEN B B, MASUDA A, et al. Potential-induced degradation in high-efficiency n-type crystalline-silicon photovoltaic modules: a literature review[J]. Solar RRL, 2021, 5(12): 2100708. [14] KOMATSU Y, YAMAGUCHI S, MASUDA A, et al. Multistage performance deterioration in n-type crystalline silicon photovoltaic modules undergoing potential-induced degradation[J]. Microelectronics Reliability, 2018, 84: 127-133. [15] HALM A, SCHNEIDER A, MIHAILETCHI V D, et al. Potential-induced degradation for encapsulated n-type IBC solar cells with front floating emitter[J]. Energy Procedia, 2015, 77: 356-363. [16] YAMAGUCHI S, JONAI S, NAKAMURA K, et al. Polarization-type potential-induced degradation in front-emitter p-type and n-type crystalline silicon solar cells[J]. ACS Omega, 2022, 7(41): 36277-36285. [17] SPORLEDER K, NAUMANN V, BAUER J, et al. Root cause analysis on corrosive potential-induced degradation effects at the rear side of bifacial silicon PERC solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110062. [18] KOENTOPP M B, KRÖBER M, TAUBITZ C. Toward a PID test standard: understanding and modeling of laboratory tests and field progression[J]. IEEE Journal of Photovoltaics, 2016, 6(1): 252-257. [19] HACKE P, TERWILLIGER K, GLICK S, et al. Interlaboratory study to determine repeatability of the damp-heat test method for potential-induced degradation and polarization in crystalline silicon photovoltaic modules[J]. IEEE Journal of Photovoltaics, 2015, 5(1): 94-101. [20] LAUSCH D, NAUMANN V, BREITENSTEIN O, et al. Potential-induced degradation (PID): introduction of a novel test approach and explanation of increased depletion region recombination[J]. IEEE Journal of Photovoltaics, 2014, 4(3): 834-840. [21] HACKE P, KEMPE M, TERWILLIGER K, et al. Characterization of multicrystalline silicon modules with system bias voltage applied in damp heat[R]. 25th European Photovoltaic Solar Energy Conference and Exhibition. September 6-10, 2010, Valencia, Spain,2010: 3760-3765. [22] HOFFMANN S, KOEHL M. Effect of humidity and temperature on the potential-induced degradation[J]. Progress in Photovoltaics: Research and Applications, 2014, 22(2): 173-179. [23] SUZUKI S, NISHIYAMA N, YOSHINO S, et al. Acceleration of potential-induced degradation by salt-mist preconditioning in crystalline silicon photovoltaic modules[J]. Japanese Journal of Applied Physics, 2015, 54(8S1): 08KG08. [24] BAUER J, NAUMANN V, GROßER S, et al. On the mechanism of potential-induced degradation in crystalline silicon solar cells[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2012, 6(8): 331-333. [25] NAUMANN V, LAUSCH D, GROßER S, et al. Microstructural analysis of crystal defects leading to potential-induced degradation (PID) of Si solar cells[J]. Energy Procedia, 2013, 33: 76-83. [26] NAUMANN V, LAUSCH D, GRAFF A, et al. The role of stacking faults for the formation of shunts during potential-induced degradation of crystalline Si solar cells[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2013, 7(5): 315-318. [27] NAUMANN V, LAUSCH D, HÄHNEL A, et al. Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells[J]. Solar Energy Materials and Solar Cells, 2014, 120(Part A): 383-389. [28] HARA K, JONAI S, MASUDA A. Potential-induced degradation in photovoltaic modules based on n-type single crystalline Si solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 140: 361-365. [29] BAE S, OH W, LEE K D, et al. Potential induced degradation of n-type crystalline silicon solar cells with p+ front junction[J]. Energy Science & Engineering, 2017, 5(1): 30-37. [30] YAMAGUCHI S, YAMAMOTO C, OHDAIRA K, et al. Reduction in the short-circuit current density of silicon heterojunction photovoltaic modules subjected to potential-induced degradation tests[J]. Solar Energy Materials and Solar Cells, 2017, 161: 439-443. [31] YAMAGUCHI S, YAMAMOTO C, OHDAIRA K, et al. Comprehensive study of potential-induced degradation in silicon heterojunction photovoltaic cell modules[J]. Progress in Photovoltaics: Research and Applications, 2018, 26(9): 697-708. [32] MCMAHON T J. Accelerated testing and failure of thin-film PV modules[J]. Progress in Photovoltaics: Research and Applications, 2004, 12(2/3): 235-248. [33] VOSWINCKEL S, MANZ P, SCHMIDT C, et al. Investigation of leakage currents depending on the mounting situation in accordance to amorphous silicon modules[J]. Energy Procedia, 2014, 57: 56-64. [34] PINGEL S, FRANK O, WINKLER M, et al. Potential Induced Degradation of solar cells and panels[C]//2010 35th IEEE Photovoltaic Specialists Conference. June 20-25, 2010. Honolulu, HI, USA. IEEE, 2010: 002817-002822. [35] 吴玲玲. 碲化镉薄膜太阳电池制备及载流子复合的研究[D]. 合肥: 中国科学技术大学, 2022. WU L L. Study on preparation and carrier recombination of cadmium telluride thin film solar cells[D].Hefei: University of Science and Technology of China, 2022 (in Chinese). [36] OLSSON N A, RICHARDSON M C, HEVELONE J. Thin film PID field failures and root cause determination[C]//2014 IEEE 40th Photovoltaic Specialists Conference (PVSC) Volume 2. June 8-13, 2014, Denver, CO, USA. IEEE, 2016: 1-4. [37] HACKE P, SPATARU S, JOHNSTON S, et al. Elucidating PID degradation mechanisms and in situ dark I-V monitoring for modeling degradation rate in CdTe thin-film modules[J]. IEEE Journal of Photovoltaics, 2016, 6(6): 1635-1640. [38] LIU J, JOHNSTON S, HARVEY S P, et al. Transmission electron microscopy study on degradation mechanism of CdTe thin-film solar cells[C]//2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). June 10-15, 2018. Waikoloa Village, HI. IEEE, 2018: 3281-3284. [39] 陶加华, 褚君浩. 铜铟镓硒薄膜太阳电池研究进展和挑战[J]. 红外与毫米波学报, 2022, 41(2): 395-412. TAO J H, CHU J H. Research progress and challenges of copper indium gallium selenide thin film solar cells[J]. Journal of Infrared and Millimeter Waves, 2022, 41(2): 395-412 (in Chinese). [40] FJÄLLSTRÖM V, SALOMÉ P M P, HULTQVIST A, et al. Potential-induced degradation of CuIn1-xGaxSe2 thin film solar cells[J]. IEEE Journal of Photovoltaics, 2013, 3(3): 1090-1094. [41] MUZZILLO C P, GLYNN S, HACKE P, et al. Potential-induced degradation of Cu(In, Ga)Se2 solar cells: alkali metal drift and diffusion effects[J]. IEEE Journal of Photovoltaics, 2018, 8(5): 1337-1342. [42] YAMAGUCHI S, JONAI S, HARA K, et al. Potential-induced degradation of Cu(In, Ga)Se2 photovoltaic modules[J]. Japanese Journal of Applied Physics, 2015, 54: 08KC13. [43] OSTERWALD C R, MCMAHON T J, DEL CUETO J A. Electrochemical corrosion of SnO2∶F transparent conducting layers in thin-film photovoltaic modules[J]. Solar Energy Materials and Solar Cells, 2003, 79(1): 21-33. [44] MASUDA A, HARA Y. Potential-induced degradation of thin-film Si photovoltaic modules[J]. Japanese Journal of Applied Physics, 2017, 56: 04CS04. [45] CARLSON D E, ROMERO R, WILLING F, et al. Corrosion effects in thin-film photovoltaic modules[J]. Progress in Photovoltaics: Research and Applications, 2003, 11(6): 377-386. [46] JANSEN K W, DELAHOY A E. A laboratory technique for the evaluation of electrochemical transparent conductive oxide delamination from glass substrates[J]. Thin Solid Films, 2003, 423(2): 153-160. [47] RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235. [48] CAROLUS J, MERCKX T, PUROHIT Z, et al. Potential-induced degradation and recovery of perovskite solar cells[J]. Solar RRL, 2019, 3(10): 1900226. [49] PUROHIT Z, SONG W Y, CAROLUS J, et al. Impact of potential-induced degradation on different architecture-based perovskite solar cells[J]. Solar RRL, 2021, 5(9): 2100349. [50] XU L J, LIU J, LUO W, et al. Potential-induced degradation in perovskite/silicon tandem photovoltaic modules[J]. Cell Reports Physical Science, 2022, 3(9): 101026. [51] GOU X F, LI X Y, ZHOU S, et al. PID testing method suitable for process control of solar cells mass production[J]. International Journal of Photoenergy, 2015, 2015: 1-5. [52] WILSON M, SAVTCHOUK A, EDELMAN P, et al. Drift characteristics of mobile ions in SiNx films and solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 142: 102-106. [53] YAMAGUCHI S, MASUDA A, OHDAIRA K. Progression of rapid potential-induced degradation of n-type single-crystalline silicon photovoltaic modules[J]. Applied Physics Express, 2016, 9(11): 112301. [54] OH K S, BAE S, LEE K J, et al. Mitigation of potential-induced degradation (PID) based on anti-reflection coating (ARC) structures of PERC solar cells[J]. Microelectronics Reliability, 2019, 100/101: 113462. [55] JONAI S, HARA K, TSUTSUI Y, et al. Relationship between cross-linking conditions of ethylene vinyl acetate and potential induced degradation for crystalline silicon photovoltaic modules[J]. Japanese Journal of Applied Physics, 2015, 54: 08KG01. [56] LUO W, HACKE P, TERWILLIGER K, et al. Elucidating potential-induced degradation in bifacial PERC silicon photovoltaic modules[J]. Progress in Photovoltaics: Research and Applications, 2018, 26(10): 859-867. [57] PARK N C, OH W W, KIM D H. Effect of temperature and humidity on the degradation rate of multicrystalline silicon photovoltaic module[J]. International Journal of Photoenergy, 2013, 2013: 1-9. [58] OHDAIRA K, KOMATSU Y, SUZUKI T, et al. Influence of sodium on the potential-induced degradation for n-type crystalline silicon photovoltaic modules[J]. Applied Physics Express, 2019, 12(6): 064004. [59] JONAI S, MASUDA A. Origin of Na causing potential-induced degradation for p-type crystalline Si photovoltaic modules[J]. AIP Advances, 2018, 8(11): 115311. [60] OH J, TAMIZHMANI G, BOWDEN S, et al. Surface disruption method with flexible glass to prevent potential-induced degradation of the shunting type in PV modules[J]. IEEE Journal of Photovoltaics, 2017, 7(1): 62-67. [61] SCHULZE S H, APEL A, MEITZNER R, et al. Influence of polymer properties on potential induced degradation of PV-modules[C]//28th European Photovoltaic Solar Energy Conference. September 30-October 4, 2013, Paris, France,2013: 503-507. [62] SCHWARK M, BERGER K, EBNER R, et al. Investigation of potential induced degradation (PID) of solar modules from different manufacturers[C]//IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society. November 10-13, 2013, Vienna, Austria. IEEE, 2014: 8090-8097. [63] NAGEL H, METZ A, WANGEMANN K. Crystalline Si solar cells and modules featuring excellent stability against potential-induced degradation//26th European Photovoltaic Solar Energy Conference and Exhibition. September 5-9, 2011, Hamburg, Germany, 2011: 3107-3112. |