[1] CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415. [2] YUAN Y, HAO W B, MU W X, et al. Toward emerging gallium oxide semiconductors: a roadmap[J]. Fundamental Research, 2021, 1(6): 697-716. [3] CHEN X H, REN F F, YE J D, et al. Gallium oxide-based solar-blind ultraviolet photodetectors[J]. Semiconductor Science and Technology, 2020, 35(2): 023001. [4] LEEDY K D, CHABAK K D, VASILYEV V, et al. Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition[J]. Applied Physics Letters, 2017, 111(1): 012103. [5] HU C Y, SAITO K, TANAKA T, et al. Growth properties of gallium oxide on sapphire substrate by plasma-assisted pulsed laser deposition[J]. Journal of Semiconductors, 2019, 40(12): 122801. [6] WEI J Q, KIM K, LIU F, et al. β-Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy[J]. Journal of Semiconductors, 2019, 40(1): 012802. [7] HONG Z F, CHEN H F, JIA Y F, et al. Characteristics of Ga2O3 epitaxial films on seed layer grown by magnetron sputtering[J]. Acta Physica Sinica, 2020, 69(22): 228103. [8] OSHIMA Y, VILLORA E G, SHIMAMURA K. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0 0 0 1) substrates by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2015, 410: 53-58. [9] XIU X Q, ZHANG L Y, LI Y W, et al. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3[J]. Journal of Semiconductors, 2019, 40(1): 011805. [10] KANEKO K, FUJITA S, HITORA T. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique[J]. Japanese Journal of Applied Physics, 2018, 57(2S2): 02CB18. [11] MA T C, CHEN X H, REN F F, et al. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique[J]. Journal of Semiconductors, 2019, 40(1): 012804. [12] FENG Z X, BHUIYAN A F M A U, XIA Z B, et al. Probing charge transport and background doping in metal-organic chemical vapor deposition-grown (010) β-Ga2O3[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2020, 14(8): 2000145. [13] XIA X C, CHEN Y P, FENG Q J, et al. Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition[J]. Applied Physics Letters, 2016, 108(20): 202103. [14] ZHANG Y B, ZHENG J, MA P P, et al. Growth and characterization of β-Ga2O3 thin films grown on off-angled Al2O3 substrates by metal-organic chemical vapor deposition[J]. Journal of Semiconductors, 2022, 43(9): 092801. [15] ARORA K, KUMAR N, VASHISHTHA P, et al. Investigating the role of oxygen and related defects in the self-biased and moderate-biased performance of β-Ga2O3 solar-blind photodetectors[J]. Journal of Physics D: Applied Physics, 2021, 54(16): 165102. [16] ZHANG X Y, WANG L, WANG X D, et al. High-performance β-Ga2O3 thickness dependent solar blind photodetector[J]. Optics Express, 2020, 28(3): 4169-4177. [17] XU Y, CHEN X H, ZHOU D, et al. Carrier transport and gain mechanisms in β-Ga2O3-based metal-semiconductor-metal solar-blind Schottky photodetectors[J]. IEEE Transactions on Electron Devices, 2019, 66(5): 2276-2281. [18] XU Y, CHENG Y L, LI Z, et al. Ultrahigh-performance solar-blind photodetectors based on high quality heteroepitaxial single crystalline β-Ga2O3 film grown by vacuumfree, low-cost mist chemical vapor deposition[J]. Advanced Materials Technologies, 2021, 6(6): 2001296. [19] MA Y J, TANG W B, CHEN T W, et al. Effect of off-axis substrate angles on β-Ga2O3 thin films and solar-blind ultraviolet photodetectors grown on sapphire by MOCVD[J]. Materials Science in Semiconductor Processing, 2021, 131: 105856. [20] SUN X Y, CHEN X H, HAO J G, et al. A self-powered solar-blind photodetector based on polyaniline/α-Ga2O3 p-n heterojunction[J]. Applied Physics Letters, 2021, 119(14): 141601. [21] YU F P, OU S L, WUU D S. Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors[J]. Optical Materials Express, 2015, 5(5): 1240-1249. [22] CUI M, XU Y, SUN X Y, et al. Photoconductive and photovoltaic metal-semiconductor-metal κ-Ga2O3 solar-blind detectors with high rejection ratios[J]. Journal of Physics D: Applied Physics, 2022, 55(39): 394003. [23] CHEN X H, MU W X, XU Y, et al. Highly narrow-band polarization-sensitive solar-blind photodetectors based on β-Ga2O3 single crystals[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7131-7137. [24] RAZEGHI M, ROGALSKI A. Semiconductor ultraviolet detectors[J]. Journal of Applied Physics, 1996, 79(10): 7433-7473. [25] KUNG P, ZHANG X, WALKER D, et al. Kinetics of photoconductivity in n-type GaN photodetector[J]. Applied Physics Letters, 1995, 67(25): 3792-3794. [26] XUAN X M, WANG J H, MAO Y Q, et al. Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate[J]. Acta Physica Sinica, 2021, 70(23): 238502. [27] MA Y J, FENG B Y, ZHANG X D, et al. High-performance β-Ga2O3 solar-blind ultraviolet photodetectors epitaxially grown on (110) TiO2 substrates by metalorganic chemical vapor deposition[J]. Vacuum, 2021, 191: 110402. [28] JEONG S H, VU T K O, KIM E K. Post-annealing effects on Si-doped Ga2O3 photodetectors grown by pulsed laser deposition[J]. Journal of Alloys and Compounds, 2021, 877: 160291. [29] HU H Z, WU C, ZHAO N, et al. Epitaxial growth and solar-blind photoelectric characteristic of Ga2O3 film on various oriented sapphire substrates by plasma-enhanced chemical vapor deposition[J]. Physica Status Solidi (a), 2021, 218(11): 2100076. [30] WANG Y H, LI S Y, CAO J, et al. Improved response speed of β-Ga2O3 solar-blind photodetectors by optimizing illumination and bias[J]. Materials & Design, 2022, 221: 110917. |