[1] BLOOM S, BERGSTRESSER T K. Band structure of α-Sn, InSb and CdTe including spin-orbit effects[J]. Solid State Communications, 1968, 6(7): 465-467. [2] ZHANG S C, QI X L. A fine point on topological insulators[J]. Physics Today, 2010, 63(8): 12. [3] HUANG H Q, LIU F. Tensile strained gray tin: Dirac semimetal for observing negative magnetoresistance with Shubnikov-de Haas oscillations[J]. Physical Review B, 2017, 95(20): 201101. [4] ZHANG D Q, WANG H Q, RUAN J W, et al. Engineering topological phases in the luttinger semimetal α-Sn[J]. Physical Review B, 2018, 97(19): 195139. [5] BURGERS W G, GROEN L J. Mechanism and kinetics of the allotropic transformation of tin[J]. Discussions of the Faraday Society, 1957, 23(0): 183-195. [6] BUSCH G A, KEBN R. Semiconducting properties of gray tin[M]//Solid State Physics. Amsterdam: Elsevier, 1960: 1-40. [7] GROVES S, PAUL W. Band structure of gray tin[J]. Physical Review Letters, 1963, 11(5): 194-196. [8] FARROW R F C, ROBERTSON D S, WILLIAMS G M, et al. The growth of metastable, heteroepitaxial films of α-Sn by metal beam epitaxy[J]. Journal of Crystal Growth, 1981, 54(3): 507-518. [9] FU L, KANE C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4): 045302. [10] BARFUSS A, DUDY L, SCHOLZ M, et al. Elemental topological insulator with tunable Fermi level: strained α-Sn on InSb(001)[J]. Physical Review Letters, 2014, 112(23): 239903. [11] OHTSUBO Y, LE FÈVRE P, BERTRAN F, et al. Dirac cone with helical spin polarization in ultrathin α-Sn(001) films[J]. Physical Review Letters, 2013, 111(21): 216401. [12] KÜFNER S, FITZNER M, BECHSTEDT F. Topological α-Sn surface states versus film thickness and strain[J]. Physical Review B, 2014, 90(12): 125312. [13] ROGALEV V A, RAUCH T, SCHOLZ M R, et al. Double band inversion in α-Sn: appearance of topological surface states and the role of orbital composition[J]. Physical Review B, 2017, 95(16): 161117. [14] ROGALEV V A, REIS F, ADLER F, et al. Tailoring the topological surface state in ultrathin α-Sn(111) films[J]. Physical Review B, 2019, 100(24): 245144. [15] SCHOLZ M R, ROGALEV V A, DUDY L, et al. Topological surface state of α-Sn on InSb(001) as studied by photoemission[J]. Physical Review B, 2018, 97(7): 075101. [16] XU C Z, CHAN Y H, CHEN Y G, et al. Elemental topological Dirac semimetal: α-Sn on InSb(111)[J]. Physical Review Letters, 2017, 118(14): 146402. [17] ANH L D, TAKASE K, CHIBA T, et al. Elemental topological Dirac semimetal α-Sn with high quantum mobility[J]. Advanced Materials, 2021, 33(51): e2104645. [18] BARBEDIENNE Q, VARIGNON J, REYREN N, et al. Angular-resolved photoemission electron spectroscopy and transport studies of the elemental topological insulator α-Sn[J]. Physical Review B, 2018, 98(19): 195445. [19] VAIL O, TAYLOR P, FOLKES P, et al. Growth and magnetotransport in thin-film α-Sn on CdTe[J]. Physica Status Solidi (b), 2020, 257(1): 1800513. [20] XU Y, YAN B H, ZHANG H J, et al. Large-gap quantum spin hall insulators in tin films[J]. Physical Review Letters, 2013, 111(13): 136804. [21] DENG J L, XIA B Y, MA X C, et al. Epitaxial growth of ultraflat stanene with topological band inversion[J]. Nature Materials, 2018, 17(12): 1081-1086. [22] ZHU F F, CHEN W J, XU Y, et al. Epitaxial growth of two-dimensional stanene[J]. Nature Materials, 2015, 14(10): 1020-1025. [23] FALSON J, XU Y, LIAO M, et al. Type-Ⅱ Ising pairing in few-layer stanene[J]. Science, 2020, 367(6485): 1454-1457. [24] LIAO M H, ZANG Y Y, GUAN Z Y, et al. Superconductivity in few-layer stanene[J]. Nature Physics, 2018, 14(4): 344-348. [25] BINDA F, AVCI C O, ALVARADO S F, et al. Spin-orbit torques and magnetotransport properties of α-Sn and β-Sn heterostructures[J]. Physical Review B, 2021, 103(22): 224428. [26] DING J J, LIU C P, KALAPPATTIL V, et al. Switching of a magnet by spin-orbit torque from a topological Dirac semimetal[J]. Advanced Materials, 2021, 33(23): 2005909. [27] DING J J, LIU C P, ZHANG Y J, et al. Large damping enhancement in Dirac-semimetal-ferromagnetic-metal layered structures caused by topological surface states[J]. Advanced Functional Materials, 2021, 31(11): 2008411. [28] GLADCZUK Ł, GLADCZUK L, DLUZEWSKI P, et al. Study of spin pumping through α-Sn thin films[J]. Physica Status Solidi-Rapid Research Letters, 2021, 15(6): 2100137. [29] ROJAS-SÁNCHEZ J C, OYARZÚN S, FU Y, et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films[J]. Physical Review Letters, 2016, 116(9): 096602. [30] BRUDEVOLL T, CITRIN D S, CARDONA M, et al. Electronic structure of α-Sn and its dependence on hydrostatic strain[J]. Physical Review B, 1993, 48(12): 8629-8635. [31] YUEN W T, LIU W K, JOYCE B A, et al. RHEED studies of the surface morphology of α-Sn pseudomorphically grown on InSb(100) by MBE-a new kind of non-polar/polar system[J]. Semiconductor Science and Technology, 1990, 5(5): 373-384. [32] SONG H H, YAO J S, DING Y F, et al. Thermal stability enhancement in epitaxial alpha tin films by strain engineering[J]. Advanced Engineering Materials, 2019, 21(10): 1900410. [33] DING Y F, SONG H H, HUANG J W, et al. Wafer-scale and topologically nontrivial α-Sn films grown on InSb(001) by molecular-beam epitaxy[J]. Physical Review Applied, 2022, 17: 014015. [34] DING Y F, LI C, ZHOU J, et al. Transport evidence of the spin-polarized topological surface states of α-Sn grown on CdTe by molecular beam epitaxy[J]. Applied Physics Letters, 2022, 121(9): 093102. |