人工晶体学报 ›› 2023, Vol. 52 ›› Issue (6): 1036-1051.
所属专题: 半导体薄膜与外延技术
林泽丰1, 孙伟轩1, 刘天想1, 涂思佳1, 倪壮1, 柏欣博1, 赵展艺1, 张济全1, 陈赋聪1, 胡卫1, 冯中沛1,2, 袁洁1, 金魁1,2
收稿日期:
2023-03-20
出版日期:
2023-06-15
发布日期:
2023-06-30
作者简介:
林泽丰(1994—),男,福建省人,博士。E-mail:linzefeng@iphy.ac.cn
基金资助:
LIN Zefeng1, SUN Weixuan1, LIU Tianxiang1, TU Sijia1, NI Zhuang1, BAI Xinbo1, ZHAO Zhanyi1, ZHANG Jiquan1, CHEN Fucong1, HU Wei1, FENG Zhongpei1,2, YUAN Jie1, JIN Kui1,2
Received:
2023-03-20
Online:
2023-06-15
Published:
2023-06-30
摘要: 超导薄膜不仅在超导应用方面扮演着举足轻重的角色,而且是超导机理研究的良好载体,是连接超导应用和机理的桥梁。脉冲激光沉积(PLD)是最常用的超导薄膜制备技术之一。本文综述了PLD技术制备铜氧化物、铁基、氮化物、钛氧化物等超导薄膜的研究进展,并介绍了与高温超导薄膜应用相关的两种PLD新技术:超导带材和大面积薄膜制备。最后,本文介绍了基于材料基因工程的高通量组合薄膜技术在高温超导研究上的典型成功案例。继续发展和使用该实验技术,构建与高温超导相关的高维相图和定量规律,有望实现机理研究实验上从量变到质变的全面突破。
中图分类号:
林泽丰, 孙伟轩, 刘天想, 涂思佳, 倪壮, 柏欣博, 赵展艺, 张济全, 陈赋聪, 胡卫, 冯中沛, 袁洁, 金魁. 脉冲激光沉积技术制备超导薄膜的研究进展[J]. 人工晶体学报, 2023, 52(6): 1036-1051.
LIN Zefeng, SUN Weixuan, LIU Tianxiang, TU Sijia, NI Zhuang, BAI Xinbo, ZHAO Zhanyi, ZHANG Jiquan, CHEN Fucong, HU Wei, FENG Zhongpei, YUAN Jie, JIN Kui. Research Progress on Superconducting Films Prepared by Pulsed Laser Deposition[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1036-1051.
[1] SMITH H M, TURNER A F. Vacuum deposited thin films using a ruby laser[J]. Applied Optics, 1965, 4(1): 147-148. [2] 杨邦朝, 王文生. 薄膜物理与技术[M]. 成都: 电子科技大学出版社, 1994. YANG B C, WANG W S. Thin film physics and technology[M]. Chengdu: University of Electronic Science and Technology of China Press, 1994 (in Chinese). [3] HWANG H Y, IWASA Y, KAWASAKI M, et al. Emergent phenomena at oxide interfaces[J]. Nature Materials, 2012, 11(2): 103-113. [4] KANAI M, KAWAI T, KAWAI S. Atomic layer and unit cell layer growth of (Ca, Sr)CuO2 thin film by laser molecular beam epitaxy[J]. Applied Physics Letters, 1991, 58(7): 771-773. [5] DIJKKAMP D, VENKATESAN T, WU X D, et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material[J]. Applied Physics Letters, 1987, 51(8): 619-621. [6] TREECE R E, OSOFSKY M S, SKELTON E F, et al. New phase of superconducting NbN stabilized by heteroepitaxial film growth[J]. Physical Review B, 1995, 51(14): 9356-9359. [7] HEINRICH A, LEIRER C, STRITZKER B. Pulsed laser deposition of MgB2-films with high critical temperatures[J]. Superconductor Science and Technology, 2005, 18(9): 1215-1217. [8] HIRAMATSU H, KATASE T, KAMIYA T, et al. Superconductivity in epitaxial thin films of co-doped SrFe2As2 with bilayered FeAs structures and their magnetic anisotropy[J]. Applied Physics Express, 2008, 1: 101702. [9] KATASE T, HIRAMATSU H, YANAGI H, et al. Atomically-flat, chemically-stable, superconducting epitaxial thin film of iron-based superconductor, cobalt-doped BaFe2As2[J]. Solid State Communications, 2009, 149(47/48): 2121-2124. [10] KATASE T, HIRAMATSU H, KAMIYA T, et al. High critical current density 4 MA/cm2 in co-doped BaFe2As2Epitaxial films grown on (La, Sr)(Al, Ta)O3Substrates without buffer layers[J]. Applied Physics Express, 2010, 3(6): 063101. [11] HAN Y, LI W Y, CAO L X, et al. Preparation and superconductivity of iron selenide thin films[J]. Journal of Physics: Condensed Matter, 2009, 21(23): 235702. [12] GEETHA KUMARY T, BAISNAB D K, JANAKI J, et al. Superconducting Fe1+δSe1-xTex thin films: growth, characterization and properties[J]. Superconductor Science and Technology, 2009, 22(9): 095018. [13] BELLINGERI E, BUZIO R, GERBI A, et al. High quality epitaxial FeSe0.5Te0.5 thin films grown on SrTiO3 substrates by pulsed laser deposition[J]. Superconductor Science and Technology, 2009, 22(10): 105007. [14] BEDNORZ J G, MÜLLER K A. Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Zeitschrift Für Physik B Condensed Matter, 1986, 64(2): 189-193. [15] CHU C W, HOR P H, MENG R L, et al. Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system[J]. Science, 1987, 235(4788): 567-569. [16] 赵忠贤, 陈立泉, 崔长庚, 等. Sr(Ba)-La-Cu氧化物的高临界温度超导电性[J]. 科学通报, 1987, 32(3): 177-179. ZHAO Z X, CHEN L Q, CUI C G, et al. Superconductivity of Sr(Ba)-La-Cu oxide at high critical temperature[J]. Chinese Science Bulletin, 1987, 32(3): 177-179 (in Chinese). [17] MCMILLAN W L. Transition temperature of strong-coupled superconductors[J]. Physical Review, 1968, 167(2): 331-344. [18] 赵忠贤, 陈立泉, 杨乾声, 等. Ba-Y-Cu氧化物液氮温区的超导电性[J]. 科学通报, 1987, 32(6): 412-414. ZHAO Z X, CHEN L Q, YANG Q S, et al. Superconductivity of Ba-Y-Cu oxide in liquid nitrogen temperature range[J]. Chinese Science Bulletin, 1987, 32(6): 412-414 (in Chinese). [19] WU M K, ASHBURN J R, TORNG C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908-910. [20] SCHILLING A, CANTONI M, GUO J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system[J]. Nature, 1993, 363(6424): 56-58. [21] ZHANG Y E, LIU W H, ZHU X Y, et al. Unprecedented high irreversibility line in the nontoxic cuprate superconductor (Cu, C)Ba2Ca3Cu4O11+δ[J]. Science Advances, 2018, 4(9): eaau0192. [22] SMITH M G, MANTHIRAM A, ZHOU J, et al. Electron-doped superconductivity at 40 K in the infinite-layer compound Sr1-yNdyCu2[J]. Nature, 1991, 351(6327): 549-551. [23] AZUMA M, HIROI Z, TAKANO M, et al. Superconductivity at 110 K in the infinite-layer compound (Sr1-xCax)1-yCuO2[J]. Nature, 1992, 356(6372): 775-776. [24] GUPTA A. Thin film synthesis of metastable and artificially structured oxides[J]. Current Opinion in Solid State and Materials Science, 1997, 2(1): 23-31. [25] DUAN T F, HAO J H, CHU H F, et al. Preparation and superconducting properties of the (Cu, C)Ba2Ca3Cu4O11+y films with zero-resistance transition temperature of 96 K[J]. Superconductor Science and Technology, 2020, 33(2): 025009. [26] GNANASEKAR K I, SHARON M, PINTO R, et al. Pulsed laser ablation: a new route to synthesize novel superconducting compounds as oriented films[J]. Journal of Applied Physics, 1996, 79(2): 1082. [27] KAWAI T, EGAMI Y, TABATA H, et al. New cuprate superconductors[J]. Nature, 1991, 349(6306): 200. [28] 贾艳丽, 杨 桦, 袁 洁, 等. 浅析电子型掺杂铜氧化物超导体的退火过程[J]. 物理学报, 2015, 64(21): 217402. JIA Y L, YANG H, YUAN J, et al. A brief analysis of annealing process for electron-doped cuprate superconductors[J]. Acta Physica Sinica, 2015, 64(21): 217402 (in Chinese). [29] NAITO M, KROCKENBERGER Y, IKEDA A, et al. Reassessment of the electronic state, magnetism, and superconductivity in high-Tc cuprates with the Nd2CuO4 structure[J]. Physica C: Superconductivity and Its Applications, 2016, 523: 28-54. [30] SAWA A, KAWASAKI M, TAKAGI H, et al. Electron-doped superconductor La2-xCexCuO4: preparation of thin films and modified doping range for superconductivity[J]. Physical Review B, 2002, 66: 014531. [31] NAITO M, HEPP M. Superconducting T'-La2-xCexCuO4 films grown by molecular beam epitaxy[J]. Physica C: Superconductivity, 2001, 357/358/359/360: 333-336. [32] JIN K, BUTCH N P, KIRSHENBAUM K, et al. Link between spin fluctuations and electron pairing in copper oxide superconductors[J]. Nature, 2011, 476(7358): 73-75. [33] MANDAL P R, SARKAR T, HIGGINS J S, et al. Nernst effect in the electron-doped cuprate superconductor La2-xCexCuO4[J]. Physical Review B, 2018, 97: 014522. [34] MANDAL P R, SARKAR T, GREENE R L. Anomalous quantum criticality in the electron-doped cuprates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(13): 5991-5994. [35] HEPTING M, CHAIX L, HUANG E W, et al. Three-dimensional collective charge excitations in electron-doped copper oxide superconductors[J]. Nature, 2018, 563(7731): 374-378. [36] LIN J Q, YUAN J E, JIN K, et al. Doping evolution of the charge excitations and electron correlations in electron-doped superconducting La2-xCexCuO4[J]. NPJ Quantum Materials, 2020, 5: 4. [37] TAGAY Z, MAHMOOD F, LEGROS A, et al. BCS d-wave behavior in the terahertz electrodynamic response of electron-doped cuprate superconductors[J]. Physical Review B, 2021, 104(6): 064501. [38] TARAPADA S, WEI D S, ZHANG J, et al. Ferromagnetic order beyond the superconducting dome in a cuprate superconductor[J]. Science, 2020, 368(6490): 532-534. [39] RAFIQUE M, FENG Z P, LIN Z F, et al. Ionic liquid gating induced protonation of electron-doped cuprate superconductors[J]. Nano Letters, 2019, 19(11): 7775-7780. [40] YU H S, HE G, JIA Y L, et al. Anomalous in-plane magnetoresistance of electron-doped cuprate La2-xCexCuO4±δ[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(9): 097411. [41] CHERN M Y, GUPTA A, HUSSEY B W. Layer-by-layer deposition of La1.85Sr0.15CuOx films by pulsed laser ablation[J]. Applied Physics Letters, 1992, 60(24): 3045-3047. [42] TANG C, LIN Z, ZHANG J, et al. Suppression of antiferromagnetic order in the electron-doped cuprate T′-La2-xCexCuO4±δ[J]. Physical Review B, 2021, 104(15): 155125. [43] JHI S H, IHM J, LOUIE S G, et al. Electronic mechanism of hardness enhancement in transition-metal carbonitrides[J]. Nature, 1999, 399(6732): 132-134. [44] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364. [45] LJUNGCRANTZ H, ODÉN M, HULTMAN L, et al. Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO[J]. Journal of Applied Physics, 1996, 80(12): 6725-6733. [46] MCINTYRE D, GREENE J E, HÅKANSSON G, et al. Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: kinetics and mechanisms[J]. Journal of Applied Physics, 1990, 67(3): 1542-1553. [47] TORGOVKIN A, CHAUDHURI S, RUHTINAS A, et al. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition[J]. Superconductor Science and Technology, 2018, 31(5): 055017. [48] JAUBERTEAU I, BESSAUDOU A, MAYET R, et al. Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical and some other properties[J]. Coatings, 2015, 5(4): 656-687. [49] WANG L B, LOU Z S, BAO K Y, et al. Low-temperature solid state synthesis and characterization of superconducting vanadium nitride[J]. Chinese Physics Letters, 2017, 34(2): 028101. [50] SEO H S, LEE T Y, PETROV I, et al. Epitaxial and polycrystalline HfNx (0.8≤x≤1.5) layers on MgO(001): film growth and physical properties[J]. Journal of Applied Physics, 2005, 97(8): 083521. [51] GUO J, ZHAN G H, LIU J Q, et al. Hopping conduction in zirconium oxynitrides thin film deposited by reactive magnetron sputtering[J]. Physica B: Condensed Matter, 2015, 475: 86-89. [52] LI Q, CHEN L G. Superconducting atmospheric structure and pressure-induced novel phases of cobalt mononitride[J]. Computational Materials Science, 2020, 174: 109464. [53] RICHARDSON C J K, ALEXANDER A, WEDDLE C G, et al. Low-loss superconducting titanium nitride grown using plasma-assisted molecular beam epitaxy[J]. Journal of Applied Physics, 2020, 127(23): 235302. [54] POSTOLOVA S V, MIRONOV A Y, BATURINA T I. Nonequilibrium transport near the superconducting transition in TiN films[J]. JETP Letters, 2015, 100(10): 635-641. [55] ENGEL A, AESCHBACHER A, INDERBITZIN K, et al. Tantalum nitride superconducting single-photon detectors with low cut-off energy[J]. Applied Physics Letters, 2012, 100(6): 062601. [56] IL'IN K, HOFHERR M, RALL D, et al. Ultra-thin TaN films for superconducting nanowire single-photon detectors[J]. Journal of Low Temperature Physics, 2012, 167(5): 809-814. [57] WANG Z, KAWAKAMI A, UZAWA Y, et al. Superconducting properties and crystal structures of single-crystal niobium nitride thin films deposited at ambient substrate temperature[J]. Journal of Applied Physics, 1996, 79(10): 7837-7842. [58] MOHAMMED W M, YANILKIN I V, GUMAROV A I, et al. Epitaxial growth and superconducting properties of thin-film PdFe/VN and VN/PdFe bilayers on MgO(001) substrates[J]. Beilstein Journal of Nanotechnology, 2020, 11: 807-813. [59] SEO H S, LEE T Y, WEN J G, et al. Growth and physical properties of epitaxial HfN layers on MgO(001)[J]. Journal of Applied Physics, 2004, 96(1): 878-884. [60] MEI A B, HOWE B M, ZHANG C, et al. Physical properties of epitaxial ZrN/MgO(001) layers grown by reactive magnetron sputtering[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013, 31(6): 061516. [61] GUO Y Q, PENG J, QIN W, et al. Freestanding cubic ZrN single-crystalline films with two-dimensional superconductivity[J]. Journal of the American Chemical Society, 2019, 141(26): 10183-10187. [62] LU W X, ZHAI H, LI Q A, et al. Pronounced enhancement of superconductivity in ZrN via strain engineering[J]. The Journal of Physical Chemistry Letters, 2021, 12(7): 1985-1990. [63] VOLKOV S, GREGOR M, ROCH T, et al. Superconducting properties of very high quality NbN thin films grown by pulsed laser deposition[J]. Journal of Electrical Engineering, 2019, 70(7): 89-94. [64] WANG G Y, ZHU Z, YANG X Y, et al. Atomically flat superconducting NbN thin films grown on SrTiO3 (111) by plasma-assisted MBE[J]. APL Materials, 2017, 5(12): 126107. [65] KALAL S, GUPTA M, RAWAT R. N concentration effects on structure and superconductivity of NbN thin films[J]. Journal of Alloys and Compounds, 2021, 851: 155925. [66] ZOU Y T, QI X T, ZHANG C, et al. Discovery of superconductivity in hard hexagonal ε-NbN[J]. Scientific Reports, 2016, 6: 22330. [67] STERN J A, FARR W H. Fabrication and characterization of superconducting NbN nanowire single photon detectors[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 306-309. [68] CHENG R S, WRIGHT J, XING H G, et al. Epitaxial niobium nitride superconducting nanowire single-photon detectors[J]. Applied Physics Letters, 2020, 117(13): 132601. [69] KOBAYASHI A, UENO K, FUJIOKA H. Autonomous growth of NbN nanostructures on atomically flat AlN surfaces[J]. Applied Physics Letters, 2020, 117(23): 231601. [70] CHEN F C, BAI X B, WANG Y X, et al. Emergence of superconducting dome in ZrNx films via variation of nitrogen concentration[J]. Science Bulletin, 2023, 68(7): 674-678. [71] ZHANG Q, JIANG K, GU Y H, et al. Unconventional high temperature superconductivity in cubic zinc-blende transition metal compounds[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(7): 1-5. [72] HSU F C, LUO J Y, YEH K W, et al. Superconductivity in the PbO-type structure α-FeSe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(38): 14262-14264. [73] MEDVEDEV S, MCQUEEN T M, TROYAN I A, et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure[J]. Nature Materials, 2009, 8(8): 630-633. [74] MARGADONNA S, TAKABAYASHI Y, OHISHI Y, et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe(Tc=37 K)[J]. Physical Review B, 2009, 80(6): 064506. [75] LEI B, CUI J, XIANG Z, et al. Evolution of high-temperature superconductivity from a low-Tc phase tuned by carrier concentration in FeSe thin flakes[J]. Physical Review Letters, 2016, 116(7): 077002. [76] SHIKAMA N, SAKISHITA Y, NABESHIMA F, et al. Positive and negative chemical pressure effects investigated in electron-doped FeSe films with an electric-double-layer structure[J]. Physical Review B, 2021, 104(9): 094512. [77] MIYATA Y, NAKAYAMA K, SUGAWARA K, et al. High-temperature superconductivity in potassium-coated multilayer FeSe thin films[J]. Nature Materials, 2015, 14(8): 775-779. [78] GUO J G, JIN S F, WANG G, et al. Superconductivity in the iron selenide KxFe2Se2(0≤x≤1.0)[J]. Physical Review B, 2010, 82(18): 180520. [79] BURRARD-LUCAS M, FREE D G, SEDLMAIER S J, et al. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer[J]. Nature Materials, 2013, 12(1): 15-19. [80] WANG Q Y, LI Z, ZHANG W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3[J]. Chinese Physics Letters, 2012, 29(3): 037402. [81] GE J F, LIU Z L, LIU C H, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3[J]. Nature Materials, 2015, 14(3): 285-289. [82] FENG Z P, YUAN J, HE G, et al. Tunable critical temperature for superconductivity in FeSe thin films by pulsed laser deposition[J]. Scientific Reports, 2018, 8: 4039. [83] IMAI Y, SAWADA Y, ASAMI D, et al. Superconducting properties of FeSe1-x[J]. Physica C: Superconductivity and Its Applications, 2016, 530: 24-26. [84] KOBAYASHI T, OGAWA H, NABESHIMA F, et al. Interface superconductivity in FeSe thin films on SrTiO3 grown by the PLD technique[J]. Superconductor Science and Technology, 2022, 35(7): 07LT01. [85] LEE D H. Routes to high-temperature superconductivity: a lesson from FeSe/SrTiO3[J]. Annual Review of Condensed Matter Physics, 2018, 9: 261-282. [86] HOSONO H, YAMAMOTO A, HIRAMATSU H, et al. Recent advances in iron-based superconductors toward applications[J]. Materials Today, 2018, 21(3): 278-302. [87] SI W D, HAN S J, SHI X Y, et al. High Current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla[J]. Nature Communications, 2013, 4: 1347. [88] ZHANG C, SI W D, LI Q A. Doubling the critical current density in superconducting FeSe0.5Te0.5 thin films by low temperature oxygen annealing[J]. Applied Physics Letters, 2016, 109(20): 202601. [89] OZAKI T, WU L J, ZHANG C, et al. A route for a strong increase of critical current in nanostrained iron-based superconductors[J]. Nature Communications, 2016, 7: 13036. [90] LEE S, TARANTINI C, GAO P, et al. Artificially engineered superlattices of pnictide superconductors[J]. Nature Materials, 2013, 12(5): 392-396. [91] LIN Z F, QIN M Y, LI D, et al. Enhancement of the lower critical field in FeSe-coated Nb structures for superconducting radio-frequency applications[J]. Superconductor Science and Technology, 2021, 34(1): 015001. [92] ZHANG P, YAJI K, HASHIMOTO T, et al. Observation of topological superconductivity on the surface of an iron-based superconductor[EB/OL]. 2017: arXiv: 1706.05163. https://arxiv.org/abs/1706.05163 [93] FERNANDES R M, COLDEA A I, DING H, et al. Iron pnictides and chalcogenides: a newparadigm for superconductivity[J]. Nature, 2022, 601(7891): 35-44. [94] SCHOOLEY J F, HOSLER W R, COHEN M L. Superconductivity in semiconducting SrTiO3[J]. Physical Review Letters, 1964, 12(17): 474-475. [95] REED T B, BANUS M D, SJSTRAND M, et al. Superconductivity in cubic and monoclinic “TiO”'[J]. Journal of Applied Physics, 1972, 43(5): 2478-2479. [96] JOHNSTON D C, PRAKASH H, ZACHARIASEN W H, et al. High temperature superconductivity in the Li-Ti-O ternary system[J]. Materials Research Bulletin, 1973, 8(7): 777-784. [97] JOHNSTON D C. Superconducting and normal state properties of Li1+xTi2-xO4 spinel compounds. I. Preparation, crystallography, superconducting properties, electrical resistivity, dielectric behavior, and magnetic susceptibility[J]. Journal of Low Temperature Physics, 1976, 25(1): 145-175. [98] XU F, LIAO Y C, WANG M J, et al. The preparation effect of Li1+xTi2O4 and its aging effect[J]. Journal of Low Temperature Physics, 2003, 131(3/4): 569-574. [99] HARRISON M R, EDWARDS P P, GOODENOUGH J B. The superconductor-semiconductor transition in the Li1+xTi2-xO4 spinel system[J]. Philosophical Magazine B, 1985, 52(3): 679-699. [100] HEINTZ J M, DRILLON M, KUENTZLER R, et al. Superconductivity of LiTi2O4 and related systems[J]. Zeitschrift Für Physik B Condensed Matter, 1989, 76(3): 303-309. [101] INUKAI T, MURAKAMI T, INAMURA T. Preparation of superconducting LiTi2O4 thin films[J]. Thin Solid Films, 1982, 94(1): 47-50. [102] INUKAI T, MURAKAMI T. Influence of film thickness and annealing temperature on superconducting Li1+xTi2-xO4 thin films[J]. Thin Solid Films, 1985, 128(3/4): 275-282. [103] CHOPDEKAR R V, WONG F J, TAKAMURA Y, et al. Growth and characterization of superconducting spinel oxide LiTi2O4[J]. Physica C: Superconductivity, 2009, 469(21): 1885-1891. [104] KUMATANI A, OHSAWA T, SHIMIZU R, et al. Growth processes of lithium titanate thin films deposited by using pulsed laser deposition[J]. Applied Physics Letters, 2012, 101(12): 123103. [105] WEI Z X, HE G, HU W, et al. Anomalies of upper critical field in the spinel superconductor LiTi2O4-δ[J]. Physical Review B, 2019, 100(18): 184509. [106] JIN K, HE G, ZHANG X, et al. Anomalous magnetoresistance in the spinel superconductor LiTi2O4[J]. Nature Communications, 2015, 6: 7183. [107] WEI Z X, LI Q A, GONG B C, et al. Two superconductor-insulator phase transitions in the spinel oxide Li1±xTi2O4-δ induced by ionic liquid gating[J]. Physical Review B, 2021, 103(14): L140501. [108] ISOBE M, UEDA Y. Observation of phase transition from metal to spin-singlet insulator in MgTi2O4 with S=1/2 pyrochlore lattice[J]. Journal of the Physical Society of Japan, 2002, 71(8): 1848-1851. [109] ZHOU J, LI G, LUO J L, et al. Optical study of MgTi2O4: evidence for an orbital-Peierls state[J]. Physical Review B, 2006, 74(24): 245102. [110] SCHMIDT M, RATCLIFF W, RADAELLI P G, et al. Spin singlet formation in MgTi2O4: evidence of a helical dimerization pattern[J]. Physical Review Letters, 2004, 92(5): 056402. [111] KHOMSKII D I, MIZOKAWA T. Orbitally induced Peierls state in spinels[J]. Physical Review Letters, 2005, 94(15): 156402. [112] ARMITAGE N P, FOURNIER P, GREENE R L. Progress and perspectives on electron-doped cuprates[J]. Reviews of Modern Physics, 2010, 82(3): 2421-2487. [113] FERNANDES R M, CHUBUKOV A V, SCHMALIAN J. What drives nematic order in iron-based superconductors?[J]. Nature Physics, 2014, 10(2): 97-104. [114] HU W, FENG Z P, GONG B C, et al. Emergent superconductivity in single-crystalline MgTi2O4 films via structural engineering[J]. Physical Review B, 2020, 101(22): 220510. [115] ZHANG C, HAO F X, GAO G Y, et al. Enhanced superconductivity in TiO epitaxial thin films[J]. NPJ Quantum Materials, 2017, 2: 2. [116] LI Y Y, WENG Y K, ZHANG J J, et al. Observation of superconductivity in structure-selected Ti2O3 thin films[J]. NPG Asia Materials, 2018, 10(6): 522-532. [117] YOSHIMATSU K, SAKATA O, OHTOMO A. Superconductivity in Ti4O7 and γ-Ti3O5 films[J]. Scientific Reports, 2017, 7: 12544. [118] NI Z A, HU W, ZHANG Q H, et al. Epitaxial stabilization of an orthorhombic Mg-Ti-O superconductor[J]. Physical Review B, 2022, 105(21): 214511. [119] DIMOS D, CHAUDHARI P, MANNHART J, et al. Orientation dependence of grain-boundary critical currents in YBa2Cu3O7-δ bicrystals[J]. Physical Review Letters, 1988, 61(2): 219-222. [120] MACMANUS-DRISCOLL J L, WIMBUSH S C. Processing and application of high-temperature superconducting coated conductors[J]. Nature Reviews Materials, 2021, 6(7): 587-604. [121] PEURLA M, PATURI P, STEPANOV Y P, et al. Optimization of the BaZrO3 concentration in YBCO films prepared by pulsed laser deposition[J]. Superconductor Science and Technology, 2006, 19(8): 767-771. [122] CAMPBELL T A, HAUGAN T J, MAARTENSE I, et al. Flux pinning effects of Y2O3 nanoparticulate dispersions in multilayered YBCO thin films[J]. Physica C: Superconductivity, 2005, 423(1/2): 1-8. [123] CAI C B, CHI C X, LI M J, et al. Advance and challenge of secondary-generation high-temperature superconducting tapes for high field applications[J]. Chinese Science Bulletin, 2019, 64(8): 827-841. [124] LI Y J, LIU L F, HONG Z Y, et al. Progress of REBCO coated conductor program at SJTU and SSTC[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1-4. [125] HAHN S, KIM K, KIM K, et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet[J]. Nature, 2019, 570(7762): 496-499. [126] LI C G, WANG X, WANG J A, et al. The high temperature superconducting filters and its application progress[J]. Chinese Science Bulletin, 2017, 62(34): 4010-4024. [127] SUN L, HE Y S. Research progress of high temperature superconducting filters in China[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(5): 1-8. [128] QIN M Y, LIN Z F, WEI Z X, et al. High-throughput research on superconductivity[J]. Chinese Physics B, 2018, 27(12): 127402. [129] JIN K, WU J E, et al. Combinatorial film and high-throughput characterization methods of phase diagram for high-Tc superconductors[J]. Acta Physica Sinica, 2021, 70(1): 017403. [130] KOINUMA H, TAKEUCHI I. Combinatorial solid-state chemistry of inorganic materials[J]. Nature Materials, 2004, 3(7): 429-438. [131] YU H S, YUAN J, ZHU B Y, et al. Manipulating composition gradient in cuprate superconducting thin films[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(8): 087421. [132] YUAN J, CHEN Q H, JIANG K, et al. Scaling of the strange-metal scattering in unconventional superconductors[J]. Nature, 2022, 602(7897): 431-436. [133] KAMIHARA Y, WATANABE T, HIRANO M, et al. Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K[J]. Journal of the American Chemical Society, 2008, 130(11): 3296-3297. [134] FANG M H, PHAM H M, QIAN B, et al. Superconductivity close to magnetic instability in Fe(Se1-xTex)0.82[J]. Physical Review B, 2008, 78(22): 224503. [135] IMAI Y, SAWADA Y, NABESHIMA F, et al. Suppression of phase separation and giant enhancement of superconducting transition temperature in FeSe1-xTex thin films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 1937-1940. [136] SEO S, KANG J H, OH M J, et al. Origin of the emergence of higher Tc than bulk in iron chalcogenide thin films[J]. Scientific Reports, 2017, 7: 9994. [137] LIN Z F, TU S J, XU J, et al. Phase diagrams on composition-spread FeyTe1-xSex films[J]. Science Bulletin, 2022, 67(14): 1443-1449. [138] HE G, WEI Z X, FENG Z P, et al. Combinatorial laser molecular beam epitaxy system integrated with specialized low-temperature scanning tunneling microscopy[J]. Review of Scientific Instruments, 2020, 91(1): 013904. |
[1] | 韩徐, 金艳营, 曾立, 岳宏卫, 蒋艳玲, 唐平英, 黄国华, 谢清连. Tl-1223高温超导薄膜在蓝宝石单晶基片上的生长和性能研究[J]. 人工晶体学报, 2023, 52(4): 629-635. |
[2] | 朱森寅, 张晗旭, 王先杰, 黄湛钧, 宋波. RIG型磁光薄膜的研究进展及应用[J]. 人工晶体学报, 2022, 51(9-10): 1659-1672. |
[3] | 罗露林, 张洁, 羊新胜, 赵勇. 氩气退火时间对Fe(Se,Te)薄膜的性能影响研究[J]. 人工晶体学报, 2022, 51(4): 660-665. |
[4] | 朱化强, 龙开琳, 刘风坤. 低成本氧化铟锡基底的制备及其SERS活性[J]. 人工晶体学报, 2022, 51(2): 263-270. |
[5] | 郑贝贝, 邵玲, 陈英伟. 实用化Bi系超导带材的制备工艺研究进展[J]. 人工晶体学报, 2021, 50(8): 1583-1592. |
[6] | 王婷, 赵红莉, 郭世伟, 姚娟, 李爽, 符跃春, 沈晓明, 何欢. n-In0.35Ga0.65N/p-Si异质结的制备及其电学性能研究[J]. 人工晶体学报, 2021, 50(3): 484-490. |
[7] | 罗建仁, 王相虎, 樊天曜, 金嘉妮, 张如林. SiC衬底上β-Ga2O3薄膜生长及p-SiC/n-β-Ga2O3异质结光伏特性[J]. 人工晶体学报, 2021, 50(12): 2219-2224. |
[8] | 张伟;张敏;郭凯鑫;崔瑞瑞;邓朝勇. Ga0.8Fe1.2O3/Ba0.8Ca0.2Ti0.8Zr0.2O3复合薄膜的制备和铁电性能研究[J]. 人工晶体学报, 2020, 49(9): 1599-1603. |
[9] | 何东, 童靓, 徐文博, 胡文鹏, 程大伟, 徐重建. 化学溶液法制备GdBa2Cu3O7-x超导薄膜的研究[J]. 人工晶体学报, 2020, 49(10): 1814-1818. |
[10] | 代清平;邓朝勇. NiFe2O4/(0.8BaTiO3-0.2Na0.5Bi0.5TiO3)异质结层状复合薄膜的磁电性能[J]. 人工晶体学报, 2019, 48(4): 627-632. |
[11] | 权雪玲;储静远;赵跃. 采用无氟MOD法在织构金属基带上生长YBCO超导薄膜的研究[J]. 人工晶体学报, 2018, 47(11): 2398-2402. |
[12] | 代秀红;张宇生;葛大勇;娄建忠;赵红东;刘保亭. 氧氩混合气氛下脉冲激光沉积法制备YBa2Cu3O7-δ薄膜的研究[J]. 人工晶体学报, 2017, 46(8): 1464-1469. |
[13] | 仪宁;索红莉;刘敏;马麟;徐燕;李春燕;王田田. 低氟MOD法制备Zr掺杂YBCO厚膜的性能研究[J]. 人工晶体学报, 2016, 45(9): 2193-2197. |
[14] | 邓泉荣;李义奇;陈恋;王升高;王戈明. 镓掺杂对二氧化钛薄膜光吸收性能的影响[J]. 人工晶体学报, 2016, 45(8): 2156-2159. |
[15] | 胡诚;张婷婷;来国红;邱达;张昌华;朱永丹. 电场调控Pt/Co∶ZnO/Nb∶SrTiO3异质结阻变与磁性研究[J]. 人工晶体学报, 2016, 45(6): 1596-1601. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||