欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2023, Vol. 52 ›› Issue (6): 1067-1085.

• 综合评述 • 上一篇    下一篇

数值模拟顶部籽晶溶液生长法制备单晶碳化硅的研究进展

隋占仁1,2, 徐凌波1,2, 崔灿1, 王蓉2,3, 杨德仁2,3, 皮孝东2,3, 韩学峰2,3   

  1. 1.浙江理工大学物理系,浙江省光场调控技术重点实验室,杭州 310018;
    2.浙江大学杭州国际科创中心,浙江省宽禁带半导体重点实验室,杭州 311200;
    3.浙江大学材料科学与工程学院,硅材料国家重点实验室,杭州 310027
  • 收稿日期:2023-01-13 出版日期:2023-06-15 发布日期:2023-06-30
  • 通信作者: 徐凌波,博士,副教授。E-mail:xlb@zstu.edu.cn; 皮孝东,博士,教授。E-mail:xdpi@zju.edu.cn; 韩学峰,博士,研究员。E-mail:xuefenghan@zju.edu.cn
  • 作者简介:隋占仁(2000—),男,山东省人,硕士研究生。E-mail:imszr@qq.com
  • 基金资助:
    国家自然科学基金面上项目(61721005);国家自然科学基金青年科学基金(52202189);浙江省“尖兵”“领雁”研发攻关计划(2022C01021,2023C01010)

Research Progress on Numerical Simulation of Single Crystal Silicon Carbide Prepared by Top-Seeded Solution Growth Method

SUI Zhanren1,2, XU Lingbo1,2, CUI Can1, WANG Rong2,3, YANG Deren2,3, PI Xiaodong2,3, HAN Xuefeng2,3   

  1. 1. Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
    2. Zhejiang Provincial Key Laboratory of Wide Bandgap Semiconductors, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China;
    3. State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2023-01-13 Online:2023-06-15 Published:2023-06-30

摘要: 宽禁带半导体材料碳化硅(SiC)凭借着其高击穿场强、高热导率、耐高温、高化学稳定性和抗辐射等优异性能,在电力电子器件领域尤其是高温、高频、高功率等应用场景下有着巨大潜力。大尺寸、高质量、低成本的单晶SiC的制备是SiC相关半导体产品规模化应用的前提。顶部籽晶溶液生长(TSSG)法生长的单晶SiC有着晶体质量高、易扩径、易p型掺杂等优势,有望成为制备单晶SiC的主流方法。但目前由于该方法涉及的生长机理复杂,研究者对其内部机理的理解还不够充分,难以对TSSG生长设备和方法进行有效的改进与优化。利用计算机对TSSG法生长单晶SiC生长过程进行数值模拟被认为是对其内部机理探究的有效途径之一。本文首先回顾了TSSG法生长单晶SiC和相关数值模拟分析的发展历程,介绍了TSSG法生长单晶SiC和数值模拟的基本原理,然后介绍了数值模拟方法计算分析TSSG法生长单晶SiC模型涉及的主要模块、影响单晶生长的主要因素(如马兰戈尼力、浮力、电磁力等),以及对数值模型的优化方法。最后,指出了数值模拟方法计算分析TSSG法生长单晶SiC在未来的重点研究方向。

关键词: 宽禁带半导体, 碳化硅, 顶部籽晶溶液生长法, 数值模拟, 有限元, 晶体生长, 机器学习

Abstract: As a wide bandgap semiconductor, silicon carbide (SiC) has great potential in the applications of high-power, high-temperature and high-frequency power electronics owing to its excellent properties such as high breakdown electric field, high thermal conductivity, high thermal and chemical stability, and radiation resistance. The prerequisite of the widespread applications of SiC devices is to obtain large-size, high-quality and low-cost single crystal SiC. The single crystal SiC prepared by top-seeded solution growth (TSSG) method has the advantages of high crystal quality, easy diameter expansion and easy p-type doping. However, the key issue of this method is its complex growth mechanism, which has not been well understood, and it is difficult for researchers to effectively improve and optimize TSSG growth equipment and methods. Numerical simulation is considered as an effective way to explore single crystal SiC growth by TSSG method. Firstly, the fundamentals of single crystal SiC grown by TSSG method and the related numerical simulations are introduced. Main factors such as Marangoni force, buoyancy force and electromagnetic force affecting single crystal SiC growth are discussed together with the optimization of the numerical models. Finally, the key directions of the future research on the TSSG of single crystal SiC are proposed.

Key words: wide bandgap semiconductor, silicon carbide, top-seeded solution growth, numerical simulation, finite element, crystal growth, machine learning

中图分类号: