[1] OKUMURA H. Present status and future prospect of widegap semiconductor high-power devices[J]. Japanese Journal of Applied Physics, 2006, 45(10R): 7565. [2] BIELA J, SCHWEIZER M, WAFFLER S, et al. SiC versus Si—evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors[J]. IEEE Transactions on Industrial Electronics, 2011, 58(7): 2872-2882. [3] MATSUNAMI H, KIMOTO T. Step-controlled epitaxial growth of SiC: high quality homoepitaxy[J]. Materials Science and Engineering: R: Reports, 1997, 20(3): 125-166. [4] 新华社.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL].[2021-3-13].http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. XINHUA NEWS AGENCY. Outline of the 14th five year plan for national economic and social development of the people's republic of China and the long range goals for 2035[EB/OL] [2021-3-13]. http://www.gov.cn/xinwen/202103/13/content_5592681.htm (in Chinese). [5] LIU Y L. Recent progress on single-crystal growth and epitaxial growth of 4H silicon carbide[J]. Solid State Phenomena, 2022, 332: 73-84. [6] YU Y J, BYEON D S, SHIN Y J, et al. Residual stress analysis of 4H-SiC crystals obtained by a top-seeded solution growth method[J]. CrystEngComm, 2017, 19(45): 6731-6735. [7] LI J J, YANG G, LIU X S, et al. Dislocations in 4H silicon carbide[J]. Journal of Physics D: Applied Physics, 2022, 55(46): 463001. [8] HYUN K, KIM S J, TAISHI T. Effect of cobalt addition to Si-Cr solvent in top-seeded solution growth[J]. Applied Surface Science, 2020, 513: 145798. [9] 罗 昊, 张序清, 杨德仁, 等. 碳化硅单晶生长用高纯碳化硅粉体的研究进展[J]. 人工晶体学报, 2021, 50(8): 1562-1574. LUO H, ZHANG X Q, YANG D R, et al. Research progress on high-purity SiC powder for single crystal SiC growth[J]. Journal of Synthetic Crystals, 2021, 50(8): 1562-1574 (in Chinese). [10] UJIHARA T, MAEKAWA R, TANAKA R, et al. Solution growth of high-quality 3C-SiC crystals[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1438-1442. [11] 王国宾, 李 辉, 盛 达, 等. 高温溶液法生长SiC单晶的研究进展[J]. 人工晶体学报, 2022, 51(1): 3-20. WANG G B, LI H, SHENG D, et al. Research progress on the growth of SiC single crystal via high temperature solution growth method[J]. Journal of Synthetic Crystals, 2022, 51(1): 3-20 (in Chinese). [12] CARTER C H Jr, TSVETKOV V F, GLASS R C, et al. Progress in SiC: from material growth to commercial device development[J]. Materials Science and Engineering: B, 1999, 61/62: 1-8. [13] HALDEN F A. Growth of silicon carbide crystals from solution in molten metal alloys[J]. Silicon Carbide: A High Temperature Semiconductor, 1959: 115. [14] YAKIMOVA R T, YANCHEV I Y. On the transport kinetics of silicon carbide in the silicon-scandium-carbon system[J]. Journal of Crystal Growth, 1981, 51(2): 223-226. [15] IVANTSOV V, DMITRIEV V. Dissolution and growth of silicon carbide crystals in melt-solutions[J]. Materials Science Forum, 1998, 264/265/266/267/268: 73-76. [16] NASIR KHAN M, NISHIZAWA S I, BAHNG W, et al. Liquid-phase epitaxy on 6H-SiC Acheson seed crystals in closed vessel[J]. Journal of Crystal Growth, 2000, 220(1/2): 75-81. [17] DUDLEY M, HUANG X R, HUANG W, et al. The mechanism of micropipe nucleation at inclusions in silicon carbide[J]. Applied Physics Letters, 1999, 75(6): 784-786. [18] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351. [19] KATSUNO T, WATANABE Y, FUJIWARA H, et al. Analysis of surface morphology at leakage current sources of 4H-SiC Schottky barrier diodes[J]. Applied Physics Letters, 2011, 98(22): 222111. [20] YAMAMOTO K, NAGAYA M, WATANABE H, et al. Influence of threading dislocations on lifetime of gate thermal oxide[J]. Materials Science Forum, 2012, 717/718/719/720: 477-480. [21] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [22] YAMAMOTO Y, HARADA S, SEKI K, et al. Low-dislocation-density 4H-SiC crystal growth utilizing dislocation conversion during solution method[J]. Applied Physics Express, 2014, 7(6): 065501. [23] YAMAMOTO Y, HARADA S, SEKI K, et al. High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth[J]. Applied Physics Express, 2012, 5(11): 115501. [24] MURAYAMA K, HORI T, HARADA S, et al. Two-step SiC solution growth for dislocation reduction[J]. Journal of Crystal Growth, 2017, 468: 874-878. [25] KAMEI K, KUSUNOKI K, YASHIRO N, et al. Solution growth of single crystalline 6H, 4H-SiC using Si-Ti-C melt[J]. Journal of Crystal Growth, 2009, 311(3): 855-858. [26] YASHIRO N, KUSUNOKI K, KAMEI K, et al. Solution growth and crystallinity characterization of bulk 6H-SiC[J]. Materials Science Forum, 2010, 645/646/647/648: 33-36. [27] KUSUNOKI K, YASHIRO N, OKADA N, et al. Growth of large diameter 4H-SiC by TSSG technique[J]. Materials Science Forum, 2013, 740/741/742: 65-68. [28] KUSUNOKI K, KAMEI K, OKADA N, et al. Top-seeded solution growth of 3 inch diameter 4H-SiC bulk crystal using metal solvents[J]. Materials Science Forum, 2014, 778/779/780: 79-82. [29] ZHANG Z S, CHEN L, DENG J, et al. Intrinsic ferromagnetism in 4H-SiC single crystal induced by Al-doping[J]. Applied Physics A, 2020, 126(9): 729. [30] WELLMANN P J. Review of SiC crystal growth technology[J]. Semiconductor Science and Technology, 2018, 33(10): 103001. [31] MERCIER F, DEDULLE J M, CHAUSSENDE D, et al. Coupled heat transfer and fluid dynamics modeling of high-temperature SiC solution growth[J]. Journal of Crystal Growth, 2010, 312(2): 155-163. [32] KUSUNOKI K, OKADA N, KAMEI K, et al. Top-seeded solution growth of three-inch-diameter 4H-SiC using convection control technique[J]. Journal of Crystal Growth, 2014, 395: 68-73. [33] UMEZAKI T, KOIKE D, HARADA S, et al. Analysis of the carbon transport near the growth interface with respect to the rotational speed of the seed crystal during top-seeded solution growth of SiC[J]. Japanese Journal of Applied Physics, 2016, 55(12): 125601. [34] HA M T, SHIN Y J, LEE M H, et al. Effects of the temperature gradient near the crystal-melt interface in top seeded solution growth of SiC crystal[J]. Physica Status Solidi (a), 2018, 215(20): 1701017. [35] MUKAIYAMA Y, IIZUKA M, VOROB'EV A, et al. Numerical investigation of the effect of shape change in graphite crucible during top-seeded solution growth of SiC[J]. Journal of Crystal Growth, 2017, 475: 178-185. [36] CHOI S H, KIM Y G, SHIN Y J, et al. The effect of stepped wall of the graphite crucible in top seeded solution growth of SiC crystal[J]. Materials Science Forum, 2018, 924: 27-30. [37] HORIUCHI T, WANG L, SEKIMOTO A, et al. The effect of crucible rotation and crucible size in top-seeded solution growth of single-crystal silicon carbide[J]. Crystal Research and Technology, 2019, 54(5): 1900014. [38] WANG L, SEKIMOTO A, TAKEHARA Y, et al. Optimal control of SiC crystal growth in the RF-TSSG system using reinforcement learning[J]. Crystals, 2020, 10(9): 791. [39] YU W C, ZHU C, TSUNOOKA Y, et al. Geometrical design of a crystal growth system guided by a machine learning algorithm[J]. CrystEngComm, 2021, 23(14): 2695-2702. [40] 张泽盛. 液相法碳化硅晶体生长及其物性研究[D]. 北京: 中国科学院物理研究所, 2020. ZHANG Z S. Studies of solution growth and properties of SiC crystal[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2020 (in Chinese). [41] SCACE R I, SLACK G A. Solubility of carbon in silicon and germanium[J]. The Journal of Chemical Physics, 1959, 30(6): 1551-1555. [42] MITANI T, KOMATSU N, TAKAHASHI T, et al. Effect of aluminum addition on the surface step morphology of 4H-SiC grown from Si-Cr-C solution[J]. Journal of Crystal Growth, 2015, 423: 45-49. [43] MITANI T, KOMATSU N, TAKAHASHI T, et al. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions[J]. Journal of Crystal Growth, 2014, 401: 681-685. [44] ZIENKIEWICZ O C, TAYLOR R L, ZHU J Z. The finite element method: its basis and fundamentals (Seventh Edition)[M]. Butterworth-Heinemann, 2013. [45] YAMAMOTO T, OKANO Y, UJIHARA T, et al. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation[J]. Journal of Crystal Growth, 2017, 470: 75-88. [46] PARK T Y, SHIN Y J, HA M T, et al. Effect of radiation heat transfer on the control of temperature gradient in the induction heating furnace for growing single crystals[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2019, 32(6): 522-527. [47] MERCIER F, NISHIZAWA S I. Comparative numerical study of the effects of rotating and traveling magnetic fields on the carbon transport in the solution growth of SiC crystals[J]. Journal of Crystal Growth, 2013, 362: 99-102. [48] WANG L, HORIUCHI T, SEKIMOTO A, et al. Three-dimensional numerical analysis of Marangoni convection occurring during the growth process of SiC by the RF-TSSG method[J]. Journal of Crystal Growth, 2019, 520: 72-81. [49] LEFEBURE J, DEDULLE J M, OUISSE T, et al. Modeling of the growth rate during top seeded solution growth of SiC using pure silicon as a solvent[J]. Crystal Growth & Design, 2012, 12(2): 909-913. [50] TAKEHARA Y, SEKIMOTO A, OKANO Y, et al. Bayesian optimization for a high-and uniform-crystal growth rate in the top-seeded solution growth process of silicon carbide under applied magnetic field and seed rotation[J]. Journal of Crystal Growth, 2020, 532: 125437. [51] BAUMGARTL J, BUDWEISER W, MÜLLER G, et al. Studies of bouyancy driven convection in a vertical cylinder with parabolic temperature profile[J]. Journal of Crystal Growth, 1989, 97(1): 9-17. [52] HAYASHI Y, MITANI T, KOMATSU N, et al. Control of temperature distribution to suppress macro-defects in solution growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2019, 523: 125151. [53] LEFEBURE J, DEDULLE J M, OUISSE T, et al. Growth rate prediction in SiC solution growth using silicon as solvent[J]. Materials Science Forum, 2012, 717/718/719/720: 69-72. [54] HA M T, SHIN Y J, BAE S Y, et al. Effect of hot-zone aperture on the growth behavior of SiC single crystal produced via top-seeded solution growth method[J]. Journal of the Korean Ceramic Society, 2019, 56(6): 589-595. [55] KOIKE D, UMEZAKI T, MURAYAMA K, et al. Control of interface shape by non-axisymmetric solution convection in top-seeded solution growth of SiC crystal[J]. Materials Science Forum, 2015, 821/822/823: 18-21. [56] LIU B T, YU Y, TANG X, et al. Optimization of crucible and heating model for large-sized silicon carbide ingot growth in top-seeded solution growth[J]. Journal of Crystal Growth, 2020, 533: 125406. [57] YOON J Y, LEE M H, KIM Y, et al. Enhancement in the rate of the top seeded solution growth of SiC crystals via a roughening of the graphite surface[J]. Japanese Journal of Applied Physics, 2017, 56(6): 065501. [58] BRICE J C, CAPPER P, JONES C L, et al. ACRT: a review of models[J]. Progress in Crystal Growth and Characterization, 1986, 13(3): 197-229. [59] SCHEEL H J, SCHULZ-DUBOIS E O. Flux growth of large crystals by accelerated crucible-rotation technique[J]. Journal of Crystal Growth, 1971, 8(3): 304-306. [60] KUSUNOKI K, KAMEI K, OKADA N, et al. Solution growth of SiC crystal with high growth rate using accelerated crucible rotation technique[J]. Materials Science Forum, 2006, 527/528/529: 119-122. [61] DAIKOKU H, KADO M, SEKI A, et al. Solution growth on concave surface of 4H-SiC crystal[J]. Crystal Growth & Design, 2016, 16(3): 1256-1260. [62] SCRIVEN L E, STERNLING C V. The Marangoni effects[J]. Nature, 1960, 187(4733): 186-188. [63] STERNLING C V, SCRIVEN L E. Interfacial turbulence: hydrodynamic instability and the Marangoni effect[J]. AIChE Journal, 1959, 5(4): 514-523. [64] MERCIER F, NISHIZAWA S I. Solution growth of SiC from silicon melts: influence of the alternative magnetic field on fluid dynamics[J]. Journal of Crystal Growth, 2011, 318(1): 385-388. [65] MERCIER F, NISHIZAWA S I. Numerical investigation of the growth rate enhancement of SiC crystal growth from silicon melts[J]. Japanese Journal of Applied Physics, 2011, 50(3R): 035603. [66] ARIYAWONG K, DEDULLE J M, CHAUSSENDE D. Electromagnetic enhancement of carbon transport in SiC solution growth process: a numerical modeling approach[J]. Materials Science Forum, 2014, 778/779/780: 71-74. [67] WANG L, HORIUCHI T, SEKIMOTO A, et al. Numerical investigation of the effect of static magnetic field on the TSSG growth of SiC[J]. Journal of Crystal Growth, 2018, 498: 140-147. [68] WANG L, TAKEHARA Y, SEKIMOTO A, et al. Numerical study of three-dimensional melt flows during the TSSG process of SiC crystal for the influence of input parameters of RF-coils and an external rotating magnetic field[J]. Crystals, 2020, 10(2): 111. [69] DURAND F, DUBY J C. Carbon solubility in solid and liquid silicon—a review with reference to eutectic equilibrium[J]. Journal of Phase Equilibria, 1999, 20(1): 61-63. [70] DAIKOKU H, KADO M, SAKAMOTO H, et al. Top-seeded solution growth of 4H-SiC bulk crystal using Si-Cr based melt[J]. Materials Science Forum, 2012, 717/718/719/720: 61-64. [71] GILLESSEN K, VON MÜNCH W. Growth of silicon carbide from liquid silicon by a travelling heater method[J]. Journal of Crystal Growth, 1973, 19(4): 263-268. [72] KADO M, DAIKOKU H, SAKAMOTO H, et al. High-speed growth of 4H-SiC single crystal using Si-Cr based melt[J]. Materials Science Forum, 2013, 740/741/742: 73-76. [73] KUSUNOKI K, KAMEI K, SEKI K, et al. Nitrogen doping of 4H-SiC by the top-seeded solution growth technique using Si-Ti solvent[J]. Journal of Crystal Growth, 2014, 392: 60-65. [74] JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. [75] ALZUBI J, NAYYAR A, KUMAR A. Machine learning from theory to algorithms: an overview[J]. Journal of Physics: Conference Series, 2018, 1142: 012012. [76] MAHESH B. Machine learning algorithms-a review[J]. International Journal of Science and Research (IJSR), 2020, 9: 381-386. [77] ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: a brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. [78] 竹原悠人, 岡野泰則.機械学習,数理的手法による TSSG-SiC 結晶成長の最適条件予測[J].日本結晶成長学会誌, 2020, 46(4): 46-4-06. YUREN T, TAIZE O. Predicting the optimal conditions for TSSG SiC crystal growth through mechanical learning and mathematical techniques[J]. Journal of the Japan Crystal Growth Society, 2020, 46 (4): 46-4-06(in Japanese). [79] TSUNOOKA Y, KOKUBO N, HATASA G, et al. High-speed prediction of computational fluid dynamics simulation in crystal growth[J]. CrystEngComm, 2018, 20(41): 6546-6550. [80] DANG Y F, ZHU C, IKUMI M, et al. Adaptive process control for crystal growth using machine learning for high-speed prediction: application to SiC solution growth[J]. CrystEngComm, 2021, 23(9): 1982-1990. [81] TAKEHARA Y, SEKIMOTO A, OKANO Y, et al. Explainable machine learning for the analysis of transport phenomena in top-seeded solution growth of SiC single crystal[J]. Journal of Thermal Science and Technology, 2021, 16(1): JTST0009. |