[1] WU J Y, JU Z Y, ZHANG X, et al. Gradient design for high-energy and high-power batteries[J]. Advanced Materials, 2022, 34(29): 2202780. [2] GAO X, ZHENG X L, TSAO Y, et al. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. Journal of the American Chemical Society, 2021, 143(43): 18188-18195. [3] ZHENG Z J, SU Q, ZHANG Q, et al. Low volume change composite lithium metal anodes[J]. Nano Energy, 2019, 64: 103910. [4] CHEN L, LI W X, FAN L Z, et al. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): 1901047. [5] KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279. [6] WOOD K, NOKED M, DASGUPTA N. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior[J]. ACS Energy Letters, 2017, 2(3): 664-672. [7] LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. [8] FANG C C, LU B Y, PAWAR G, et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries[J]. Nature Energy, 2021, 6(10): 987-994. [9] ZHANG X, ZHANG Q M, WANG X G, et al. An extremely simple method for protecting lithium anodes in Li-O2 batteries[J]. Angewandte Chemie International Edition, 2018, 57(39): 12814-12818. [10] HU J L, TIAN J, LI C L. Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11615-11625. [11] WANG T S, LIU X B, ZHAO X D, et al. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries[J]. Advanced Functional Materials, 2020, 30(16): 2000786. [12] KOZEN A C, LIN C F, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6): 5884-5892. [13] KE X, LIANG Y H, OU L H, et al. Surface engineering of commercial Ni foams for stable Li metal anodes[J]. Energy Storage Materials, 2019, 23: 547-555. [14] LIU F F, XU R, HU Z X, et al. Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode[J]. Small, 2019, 15(5): 1803734. [15] SHEN F, ZHANG F, ZHENG Y J, et al. Direct growth of 3D host on Cu foil for stable lithium metal anode[J]. Energy Storage Materials, 2018, 13: 323-328. [16] YANG G H, CHEN J D, XIAO P T, et al. Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode[J]. Journal of Materials Chemistry A, 2018, 6(21): 9899-9905. [17] LU Z Y, LIANG Q H, WANG B, et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(7): 1803186. [18] 樊小勇, 张 帅, 朱永强, 等. 三维多孔铜和锌镀层协同构筑无枝晶锂金属电极[J]. 化学学报, 2022, 80(4): 517-525. FAN X Y, ZHANG S, ZHU Y Q, et al. Construction of dendrite-free lithium metal electrode using three-dimensional porous copper and zinc coatings[J]. Acta Chimica Sinica, 2022, 80(4): 517-525 (in Chinese). [19] FENG Y Y, ZHANG C F, LI B, et al. Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface[J]. Journal of Materials Chemistry A, 2019, 7(11): 6090-6098. [20] HOU G M, REN X H, MA X X, et al. Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge[J]. Journal of Power Sources, 2018, 386: 77-84. [21] LIU Y Y, ZHU Y Y, CUI Y. Challenges and opportunities towards fast-charging battery materials[J]. Nature Energy, 2019, 4(7): 540-550. [22] CHEN K, PATHAK R, GURUNG A, et al. A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes[J]. Journal of Materials Chemistry A, 2020, 8(4): 1911-1919. [23] DENG W, LIANG S S, ZHOU X F, et al. Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode[J]. Journal of Materials Chemistry A, 2019, 7(11): 6267-6274. [24] PEI F, ANG F, YE W B, et al. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries[J]. ACS Nano, 2019, 13(7): 8337-8346. [25] DUAN H, ZHANG J, XIANG C, et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries[J]. Journal of the American Chemical Society, 2018, 140(51): 18051-18057. [26] WU N, ZHANG Q Y, GUO Y J, et al. Boron-doped three-dimensional MXene host for durable lithium-metal anode[J]. Rare Metals, 2022, 41(7): 2217-2222. [27] LIU T C, LIN Z Z, WANG D, et al. Aluminum electrolysis derivative spent cathodic carbon for dendrite-free Li metal anode[J]. Materials Today Energy, 2020, 17: 100465. [28] 王 骞, 吴 恺, 王航超, 等. 亲锂的三维二硫化锡@碳纤维布用于稳定的锂金属负极[J]. 物理化学学报, 2021, 37(1): 144-152. WANG Q, WU K, WANG H C, et al. Lithium-loving three-dimensional tin disulfide @ carbon fiber cloth used for stable lithium metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 144-152 (in Chinese). [29] NIU C J, PAN H L, XU W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology, 2019, 14(6): 594-601. [30] ZHANG R, CHEN X R, CHEN X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(27): 7764-7768. [31] LIU L, YIN Y X, LI J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials, 2018, 30(10): 1706216. [32] WU H L, ZHANG Y B, DENG Y Q, et al. A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes[J]. Science China Materials, 2019, 62(1): 87-94. [33] LI K, HU Z Y, MA J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials, 2019, 31(33): 1902399. [34] JIN C B, SHENG O W, LUO J M, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy, 2017, 37: 177-186. [35] YUN Q B, HE Y B, LV W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials, 2016, 28(32): 6932-6939. [36] ZHAO H, LEI D N, HE Y B, et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector[J]. Advanced Energy Materials, 2018, 8(19): 1800266. [37] LIU H, WANG E R, ZHANG Q, et al. Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition[J]. Energy Storage Materials, 2019, 17: 253-259. [38] YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6(1): 1-9. [39] LIN K, LI T, CHIANG S W, et al. Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes[J]. Small, 2020, 16(37): e2001784. [40] ADAIR K R, IQBAL M, WANG C H, et al. Towards high performance Li metal batteries: nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes[J]. Nano Energy, 2018, 54: 375-382. [41] ZHANG D, DAI A, WU M, et al. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries[J]. ACS Energy Letters, 2020, 5(1): 180-186. [42] 周亚州, 张占领, 柳 勇, 等. Cu@Cu2S 3D集流体诱导锂金属均匀沉积[J]. 材料热处理学报, 2022, 43(7): 53-60. ZHOU Y Z, ZHANG Z L, LIU Y, et al. Uniform deposition of lithium metal induced by 3D Cu@Cu2S current collect[J]. Transactions of Materials and Heat Treatment, 2022, 43(7): 53-60 (in Chinese). [43] 李 锐, 王 浩, 付 强, 等. 构建亲锂铜基3D集流体实现金属锂的均匀沉积[J]. 无机材料学报, 2020, 35(8): 882-888+I0001+I0002. LI R, WANG H, FU Q, et al. Stable Li-metal depositon on lithiophilic 3D CuO nanosheet-decorated Cu mesh[J]. Journal of Inorganic Materials, 2020, 35(8): 882-888+I0001+I0002 (in Chinese). [44] LIU T C, CHEN S Q, SUN W W, et al. Lithiophilic vertical cactus-like framework derived from Cu/Zn-based coordination polymer through in situ chemical etching for stable lithium metal batteries[J]. Advanced Functional Materials, 2021, 31(14): 2008514. [45] DENG W, ZHU W H, ZHOU X F, et al. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity[J]. Energy Storage Materials, 2018, 15: 266-273. [46] 何 伟, 王金淑. 电镀法制备三维多孔集流体在锂离子电池中的应用[J]. 电子元件与材料, 2020, 39(7):53-59 HE W, WANG J S. A three-dimensional porous current collector prepared by electroplating for lithium ion batteries[J]. Electronic Components & Materials, 2020, 39(7): 53-59 (in Chinese). [47] YUE X Y, LI X L, BAO J, et al. “Top-down” Li deposition pathway enabled by an asymmetric design for Li composite electrode[J]. Advanced Energy Materials, 2019, 9(35): 1901491. [48] XIANG J W, YUAN L X, SHEN Y, et al. Improved rechargeability of lithium metal anode via controlling lithium-ion flux[J]. Advanced Energy Materials, 2018, 8(36): 1802352. [49] LE T, YANG C Q, LIANG Q H, et al. A fishing-net-like 3D host for robust and ultrahigh-rate lithium metal anodes[J]. Small, 2021, 17(11): e2007231. [50] NAN Y, LI S M, SHI Y Z, et al. Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode[J]. Small, 2019, 15(45): 1903520. [51] YUN J, PARK B K, WON E S, et al. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode[J]. ACS Energy Letters, 2020, 5(10): 3108-3114. [52] ZHENG H F, ZHANG Q F, CHEN Q L, et al. 3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode[J]. Journal of Materials Chemistry A, 2019, 8(1): 313-322. [53] YUN J, WON E S, SHIN H S, et al. Efficient and robust lithium metal electrodes enabled by synergistic surface activation-passivation of copper frameworks[J]. Journal of Materials Chemistry A, 2019, 7(40): 23208-23215. [54] LIU H, DI J, WANG P, et al. A novel design of 3D carbon host for stable lithium metal anode[J]. Carbon Energy, 2022, 4(4): 654-664. [55] CAO W Z, CHEN W M, LU M, et al. In situ generation of Li3N concentration gradient in 3D carbon-based lithium anodes towards highly-stable lithium metal batteries[J]. Journal of Energy Chemistry, 2023, 76: 648-656. [56] ZHANG S, DENG W, ZHOU X, et al. Controlled lithium plating in three-dimensional hosts through nucleation overpotential regulation toward high-areal-capacity lithium metal anode[J]. Materials Today Energy, 2021, 21: 100770. [57] LIU Y C, YUAN B Y, SUN C, et al. Ultralow-expansion lithium metal composite anode via gradient framework design[J]. Advanced Functional Materials, 2022, 32(35): 2202771. [58] LI T, GU S C, CHEN L K, et al. Bidirectional lithiophilic gradients modification of ultralight 3D carbon nanofiber host for stable lithium metal anode[J]. Small, 2022, 18(33): 2203273. |