[1] YE Z X, YIN X B, CHEN L F, et al. An integrated process for removal and recovery of Cr(Ⅵ) from electroplating wastewater by ion exchange and reduction-precipitation based on a silica-supported pyridine resin[J]. Journal of Cleaner Production, 2019, 236: 117631. [2] YANG L, ZHANG Z, ZHANG C N, et al. An excellent multifunctional photocatalyst with a polyoxometalate-viologen framework for CEES oxidation, Cr(Ⅵ) reduction and dye decolorization under different light regimes[J]. Inorganic Chemistry Frontiers, 2022, 9(18): 4824-4833. [3] GHEJU M, BALCU I. Removal of chromium from Cr(Ⅵ) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations[J]. Journal of Hazardous Materials, 2011, 196: 131-138. [4] ZHU K C, DUAN Y Y, WANG F, et al. Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(Ⅵ) and Sb(Ⅴ) and positive effects of Cr(Ⅵ) on Sb(Ⅴ) adsorption[J]. Chemical Engineering Journal, 2017, 311: 236-246. [5] XIE Y Q, LIN J, LIANG J, et al. Hypercrosslinked mesoporous poly(ionic liquid)s with high density of ion pairs: efficient adsorbents for Cr(Ⅵ) removal via ion-exchange[J]. Chemical Engineering Journal, 2019, 378: 122107. [6] ZHANG Z, WANG Y L, LIU Y, et al. Three ring-shaped Zr(Ⅵ)-substituted silicotungstates: syntheses, structures and their properties[J]. Nanoscale, 2020, 12(35): 18333-18341. [7] 王静怡, 张 众, 王梓兰, 等. 吡啶鎓盐配体构筑的多钼酸基配合物的合成、结构及光催化性能[J]. 人工晶体学报, 2022, 51(7): 1227-1232+1240. WANG J Y, ZHANG Z, WANG Z L, et al. Synthesis, structure and photocatalytic properties of polymolybdate-based complex constructed by pyridinium ligand[J]. Journal of Synthetic Crystals, 2022, 51(7): 1227-1232+1240 (in Chinese). [8] LIU J C, WANG J F, HAN Q, et al. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity[J]. Angewandte Chemie, 2021, 60(20): 11153-11157. [9] ZHU Z K, ZHANG J, CONG Y C, et al. Two giant calixarene-like polyoxoniobate nanocups {Cu12Nb120} and {Cd16Nb128} built from mixed macrocyclic cluster motifs[J]. Angewandte Chemie, 2022, 61(7): e202113381. [10] LIU J X, ZHANG X B, LI Y L, et al. Polyoxometalate functionalized architectures[J]. Coordination Chemistry Reviews, 2020, 414: 213260. [11] ZHANG Z F, PANG H J, MA H Y, et al. pH-Directed assembly of four polyoxometalate-based supramolecular hybrids by using tritopic bridging ligand 1, 3, 5-tris-(1-imidazolyl)-benzene: structures and electrocatalytic properties[J]. Solid State Sciences, 2018, 75: 1-8. [12] ITURROSPE A, ARTETXE B, REINOSO S, et al. Copper(Ⅱ) complexes of tetradentate pyridyl ligands supported on Keggin polyoxometalates: single-crystal to single-crystal transformations promoted by reversible dehydration processes[J]. Inorganic Chemistry, 2013, 52(6): 3084-3093. [13] WANG J, MA P T, LI S J, et al. Polyoxotungstate cluster species connected by glutamic acid and europium[J]. Inorganic Chemistry, 2019, 58(1): 57-60. [14] SUN X J, ZHANG J, FU Z Y. Polyoxometalate cluster sensitized with copper-viologen framework for efficient degradation of organic dye in ultraviolet, visible, and near-infrared light[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 35671-35675. [15] SHELDRICK G M. SHELXL-97, Program for crystal structure refinement, University of GÖttingen, Germany, 1997. [16] ALLEN F. Acta crystallographica section B: structural science[J]. Acta Crystallographica Section A, 2002, 58: 64. [17] LIN H, HUANG C P, LI W, et al. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol[J]. Applied Catalysis B: Environmental, 2006, 68(1/2): 1-11. [18] ZHAO D X, CAI C. Cerium-based UiO-66 metal-organic framework for synergistic dye adsorption and photodegradation: a discussion of the mechanism[J]. Dyes and Pigments, 2021, 185: 108957. [19] LI X Y, PI Y H, XIA Q B, et al. TiO2 encapsulated in Salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB[J]. Applied Catalysis B: Environmental, 2016, 191: 192-201. [20] FAROUQ R. Investigation of the kinetics and optimization of photocatalytic degradation of methylene blue[J]. Journal of the Chinese Chemical Society, 2018, 65: 1333-1339. [21] HOU L, ZHANG Y Q, MA Y Y, et al. Reduced phosphomolybdate hybrids as efficient visible-light photocatalysts for Cr(Ⅵ) reduction[J]. Inorganic Chemistry, 2019, 58(24): 16667-16675. [22] LIU T Y, WANG C X, WANG W, et al. The enhanced properties in photocatalytic wastewater treatment: sulfanilamide (SAM) photodegradation and Cr6+ photoreduction on magnetic Ag/ZnFe2O4 nanoarchitectures[J]. Journal of Alloys and Compounds, 2021, 867: 159085. |