[1] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2017, 16(1): 16-22. [2] ZHANG N, FENG X B, RAO D W, et al. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation[J]. Nature Communications, 2020, 11(1): 1-11. [3] LIANG J H, TAN H R, LIU M, et al. A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(43): 16841-16848. [4] WANG M J, SHI B, ZHANG Q X, et al. Integrated and unassisted solar water-splitting system by monolithic perovskite/silicon tandem solar cell[J]. Solar RRL, 2022, 6(2): 2100748. [5] 周俊琛, 周 权, 李建保, 等. 复合半导体光电解水制氢研究进展[J]. 硅酸盐学报, 2017, 45(1): 96-105. ZHOU J C, ZHOU Q, LI J B, et al. Developments on composite semiconductors for hydrogen production by photoelectrical water splitting[J]. Journal of the Chinese Ceramic Society, 2017, 45(1): 96-105 (in Chinese). [6] KIM J H, HANSORA D, SHARMA P, et al. Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge[J]. Chemical Society Reviews, 2019, 48(7): 1908-1971. [7] URBAIN F, SMIRNOV V, BECKER J P, et al. Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting[J]. Energy & Environmental Science, 2016, 9(1): 145-154. [8] WHITE R T, KUMAR B, KUMARI S, et al. Simulations of non-monolithic tandem solar cell configurations for electrolytic fuel generation[J]. Journal of Materials Chemistry A, 2017, 5(25): 13112-13121. [9] SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. [10] CHUNG D Y, LOPES P P, FARINAZZO BERGAMO DIAS MARTINS P, et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction[J]. Nature Energy, 2020, 5(3): 222-230. [11] SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. [12] HOU S J, KLUGE R M, HAID R W, et al. A review on experimental identification of active sites in model bifunctional electrocatalytic systems for oxygen reduction and evolution reactions[J]. ChemElectroChem, 2021, 8(18): 3433-3456. [13] ANANTHARAJ S, EDE S R, SAKTHIKUMAR K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review[J]. ACS Catalysis, 2016, 6(12): 8069-8097. [14] LIU P, RODRIGUEZ J A. Catalysts for hydrogen evolution from the[NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect[J]. Journal of the American Chemical Society, 2005, 127(42): 14871-14878. [15] HU J, ZHANG C X, JIANG L, et al. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media[J]. Joule, 2017, 1(2): 383-393. [16] XU J Y, LI J J, XIONG D H, et al. Trends in activity for the oxygen evolution reaction on transition metal (M=Fe, Co, Ni) phosphide pre-catalysts[J]. Chemical Science, 2018, 9(14): 3470-3476. [17] XIAO H, SHIN H, GODDARD W A Ⅲ. Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 5872-5877. [18] 董世知, 何佳奇, 马 壮, 等. 一步水热法合成镍铜复合磷化物及其电催化析氢性能[J]. 硅酸盐学报, 2023, 51(1): 152-162. DONG S Z, HE J Q, MA Z, et al. One-step hydrothermal synthesis of NiCuP/NF catalyst and its hydrogen evolution performance[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 152-162 (in Chinese). [19] FAN J Q, CHEN Z F, SHI H J, et al. In situ grown, self-supported iron-cobalt-nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation[J]. Chemical Communications, 2016, 52(23): 4290-4293. [20] ZHANG B, ZHENG X, VOZNYY O, et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333-337. [21] ZHANG B, WANG L, CAO Z, et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics[J]. Nature Catalysis, 2020, 3(12): 985-992. [22] WANG K X, WANG X Y, LI Z J, et al. Designing 3 d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: beyond oxides[J]. Nano Energy, 2020, 77: 105162. [23] DING L, LI K, XIE Z Q, et al. Constructing ultrathin W-doped NiFe nanosheets via facile electrosynthesis as bifunctional electrocatalysts for efficient water splitting[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20070-20080. [24] LI L, CAO X J, HUO J J, et al. High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis[J]. Journal of Energy Chemistry, 2023, 76: 195-213. [25] KHODABAKHSHI M, CHEN S M, YE T, et al. Hierarchical highly wrinkled trimetallic NiFeCu phosphide nanosheets on nanodendrite Ni3S2/Ni foam as an efficient electrocatalyst for the oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36268-36276. [26] ZHANG D D, SOO J Z, TAN H H, et al. Earth-abundant amorphous electrocatalysts for electrochemical hydrogen production: a review[J]. Advanced Energy and Sustainability Research, 2021, 2(3): 2000071. [27] ZHU J J, VASILOPOULOU M, DAVAZOGLOU D, et al. Intrinsic defects and H doping in WO3[J]. Scientific Reports, 2017, 7(1): 1-9. [28] ZHANG Q X, LI T T, LIANG J H, et al. Highly wettable and metallic NiFe-phosphate/phosphide catalyst synthesized by plasma for highly efficient oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7509-7516. [29] WU B, GONG S, LIN Y C, et al. A unique NiOOH@FeOOH heteroarchitecture for enhanced oxygen evolution in saline water[J]. Advanced Materials, 2022, 34(43): 2108619. [30] LUAN X Q, DU H T, KONG Y, et al. A novel FeS-NiS hybrid nanoarray: an efficient and durable electrocatalyst for alkaline water oxidation[J]. Chemical Communications, 2019, 55(51): 7335-7338. [31] FAN R L, CHENG S B, HUANG G P, et al. Unassisted solar water splitting with 9.8% efficiency and over 100 h stability based on Si solar cells and photoelectrodes catalyzed by bifunctional Ni-Mo/Ni[J]. Journal of Materials Chemistry A, 2019, 7(5): 2200-2209. |