[1] XU B, ZHANG H B, MEI H, et al. Recent progress in metal-organic framework-based supercapacitor electrode materials[J]. Coordination Chemistry Reviews, 2020, 420: 213438. [2] ZHAO Y, SONG Z X, LI X, et al. Metal organic frameworks for energy storage and conversion[J]. Energy Storage Materials, 2016, 2: 35-62. [3] EMAM H E, ABDELHAMEED R M, AHMED H B. Adsorptive performance of MOFs and MOF containing composites for clean energy and safe environment[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104386. [4] ADEGOKE K A, MAXAKATO N W. Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion[J]. Materials Today Energy, 2021, 21: 100816. [5] DOLGOPOLOVA E A, RICE A M, MARTIN C R, et al. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements[J]. Chemical Society Reviews, 2018, 47(13): 4710-4728. [6] ZHANG X Q, CHENG X B, ZHANG Q. Nanostructured energy materials for electrochemical energy conversion and storage: a review[J]. Journal of Energy Chemistry, 2016, 25(6): 967-984. [7] MILLER E E, HUA Y, TEZEL F H. Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors[J]. Journal of Energy Storage, 2018, 20: 30-40. [8] YANG W P, LI X X, LI Y, et al. Applications of metal-organic-framework-derived carbon materials[J]. Advanced Materials, 2018: 1804740. [9] ZHUANG J L, LIU X Y, MAO H L, et al. Hollow carbon polyhedra derived from room temperature synthesized iron-based metal-organic frameworks for supercapacitors[J]. Journal of Power Sources, 2019, 429: 9-16. [10] WANG C H, KIM J, TANG J, et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures[J]. Chem, 2020, 6(1): 19-40. [11] SHANG L, YU H J, HUANG X, et al. Carbon nanoframes: well-dispersed ZIF-derived co, N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts [J]. Advanced Materials, 2016, 28(8): 1712. [12] YAO M Y, ZHAO X, JIN L, et al. High energy density asymmetric supercapacitors based on MOF-derived nanoporous carbon/manganese dioxide hybrids[J]. Chemical Engineering Journal, 2017, 322: 582-589. [13] ZHU J, SHEN X P, KONG L R, et al. MOF derived CoP-decorated nitrogen-doped carbon polyhedrons/reduced graphene oxide composites for high performance supercapacitors[J]. Dalton Transactions, 2019, 48(28): 10661-10668. [14] FANG H, BIAN H, ZHANG H, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from zinc-based bio MOF as flexible supercapacitor electrode[J]. Applied Surface Science, 2023, 614: 156154. [15] WANG M J, MAO Z X, LIU L, et al. Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction[J]. Small, 2018, 14(52): 1804183. [16] LI C J, YANG W H, HE W, et al. Multifunctional surfactants for synthesizing high-performance energy storage materials[J]. Energy Storage Materials, 2021, 43: 1-19. [17] BAI P Y, WEI S L, LOU X X, et al. An ultrasound-assisted approach to bio-derived nanoporous carbons: disclosing a linear relationship between effective micropores and capacitance[J]. RSC Advances, 2019, 9(54): 31447-31459. [18] ZHANG Z, FENG J Z, JIANG Y G, et al. Self-sacrificial salt templating: simple auxiliary control over the nanoporous structure of porous carbon monoliths prepared through the solvothermal route[J]. Nanomaterials, 2018, 8(4): 255. [19] ZHANG W, JIANG X F, ZHAO Y Y, et al. Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis[J]. Chemical Science, 2017, 8(5): 3538-3546. [20] TANG T T, YUAN R L, GUO N N, et al. Improving the surface area of metal organic framework-derived porous carbon through constructing inner support by compatible graphene quantum dots[J]. Journal of Colloid and Interface Science, 2022, 623: 77-85. [21] LIU W H, WANG K, LI C, et al. Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte[J]. Journal of Materials Chemistry A, 2018, 6(48): 24979-24987. [22] SAMUEL E, JOSHI B, KIM M W, et al. Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors[J]. Chemical Engineering Journal, 2019, 371: 657-665. [23] ZHOU P, WAN J F, WANG X R, et al. Nickel and cobalt metal-organic-frameworks-derived hollow microspheres porous carbon assembled from nanorods and nanospheres for outstanding supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 575: 96-107. [24] ZHANG S, SHI X Z, WEN X, et al. Interconnected nanoporous carbon structure delivering enhanced mass transport and conductivity toward exceptional performance in supercapacitor[J]. Journal of Power Sources, 2019, 435: 226811. [25] ZHAO K M, LIU S Q, YE G Y, et al. High-yield bottom-up synthesis of 2D metal-organic frameworks and their derived ultrathin carbon nanosheets for energy storage[J]. Journal of Materials Chemistry A, 2018, 6(5): 2166-2175. [26] LI Q A, DAI Z W, WU J B, et al. Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor[J]. Advanced Energy Materials, 2020, 10(33): 1903750. [27] WANG J E, LUO X L, YOUNG C, et al. A glucose-assisted hydrothermal reaction for directly transforming metal-organic frameworks into hollow carbonaceous materials[J]. Chemistry of Materials, 2018, 30(13): 4401-4408. [28] AL-ENIZI A M, UBAIDULLAH M, AHMED J, et al. Synthesis of NiOx@NPC composite for high-performance supercapacitor via waste pet plastic-derived Ni-MOF[J]. Composites Part B: Engineering, 2020, 183: 107655. [29] PING Y J, YANG S J, HAN J Z, et al. N-self-doped graphitic carbon aerogels derived from metal-organic frameworks as supercapacitor electrode materials with high-performance[J]. Electrochimica Acta, 2021, 380: 138237. [30] LIU Y, XU J, LIU S C. Porous carbon nanosheets derived from Al-based MOFs for supercapacitors[J]. Microporous and Mesoporous Materials, 2016, 236: 94-99. [31] HE D P, GAO Y, YAO Y C, et al. Asymmetric supercapacitors based on hierarchically nanoporous carbon and ZnCo2O4 from a single biometallic metal-organic frameworks (Zn/co-MOF) [J]. Front Chem, 2020, 8: 719. [32] ACHARYA D, PATHAK I, DAHAL B, et al. Immoderate nanoarchitectures of bimetallic MOF derived Ni-Fe-O/NPC on porous carbon nanofibers as freestanding electrode for asymmetric supercapacitors[J]. Carbon, 2023, 201: 12-23. [33] LU H Y, LIU S L, ZHANG Y F, et al. Nitrogen-doped carbon polyhedra nanopapers: an advanced binder-free electrode for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5240-5248. [34] CAO X M, SUN Z J, ZHAO S Y, et al. MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors[J]. Materials Chemistry Frontiers, 2018, 2(9): 1692-1699. [35] KIM J, YOUNG C, LEE J, et al. Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(29): 15065-15072. [36] TANG Z Y, ZHANG G H, ZHANG H, et al. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors[J]. Energy Storage Materials, 2018, 10: 75-84. [37] LIU H, LIU X, WANG S L, et al. Transition metal based battery-type electrodes in hybrid supercapacitors: a review[J]. Energy Storage Materials, 2020, 28: 122-145. [38] LI J N, ZHANG C Y, WEN Y P, et al. Design of ZIF-67 MOF-derived Co3O4/NiCo2O4 nanosheets for supercapacitor electrode materials[J]. Journal of Chemical Research, 2021, 45(11-12): 983-991. [39] ZHANG X, WANG S L, XU L, et al. Controllable synthesis of cross-linked CoAl-LDH/NiCo2S4 sheets for high performance asymmetric supercapacitors[J]. Ceramics International, 2017, 43(16): 14168-14175. [40] ZHANG Y N, CHEN J L, SU C Y, et al. Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors[J]. Nano Research, 2022, 15(10): 8983-8990. [41] HU Q, CHAI Y R, ZHOU X Y, et al. Electrochemical anion-exchanged synthesis of porous Ni/Co hydroxide nanosheets for ultrahigh-capacitance supercapacitors[J]. Journal of Colloid and Interface Science, 2021, 600: 256-263. [42] ACHARYA J, OJHA G P, KIM B S, et al. Modish designation of hollow-tubular rGO-NiMoO4@Ni-co-S hybrid core-shell electrodes with multichannel superconductive pathways for high-performance asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17487-17500. [43] LIU Z C, ZHANG G, ZHANG K, et al. Low electronegativity Mn bulk doping intensifies charge storage of Ni2P redox shuttle for membrane-free water electrolysis[J]. Journal of Materials Chemistry A, 2020, 8(7): 4073-4082. [44] HE S X, GUO F J, YANG Q, et al. Design and fabrication of hierarchical NiCoP-MOF heterostructure with enhanced pseudocapacitive properties[J]. Small, 2021, 17(21): 2100353. [45] CHHETRI K, KIM T, ACHARYA D, et al. Hollow carbon nanofibers with inside-outside decoration of Bi-metallic MOF derived Ni-Fe phosphides as electrode materials for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2022, 450: 138363. [46] YANG X F, TIAN Y H, LI S A, et al. Heterogeneous Ni-MOF/V2CTx-MXene hierarchically-porous nanorods for robust and high energy density hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2022, 10(22): 12225-12234. [47] HUANG Y C, ZHOU T, LIU H, et al. Do Ni/Cu and Cu/Ni alloys have different catalytic performances towards water-gas shift? A density functional theory investigation[J]. ChemPhysChem, 2014, 15(12): 2490-2496. [48] LI Y, XIE H Q, LI J, et al. Metal-organic framework-derived CoOx/carbon composite array for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 41649-41656. [49] LI D X, WANG J A, GUO S J, et al. Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery[J]. Advanced Functional Materials, 2020, 30(50): 2003945. [50] LIU Y, XU X M, SHAO Z P, et al. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application[J]. Energy Storage Materials, 2020, 26: 1-22. [51] LI Z W, MI H Y, LIU L, et al. Nano-sized ZIF-8 anchored polyelectrolyte-decorated silica for nitrogen-rich hollow carbon shell frameworks toward alkaline and neutral supercapacitors[J]. Carbon, 2018, 136: 176-186. [52] YAN C X, WEI J, GUAN J, et al. Highly foldable and free-standing supercapacitor based on hierarchical and hollow MOF-anchored cellulose acetate carbon nanofibers[J]. Carbon, 2023, 213: 118187. [53] SANATI S, ABAZARI R, ALBERO J, et al. Metal-organic framework derived bimetallic materials for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2021, 60(20): 11048-11067. [54] RAZA N, KUMAR T, SINGH V, et al. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material[J]. Coordination Chemistry Reviews, 2021, 430: 213660. [55] PATHAK I, ACHARYA D, CHHETRI K, et al. Ti3C2Tx MXene integrated hollow carbon nanofibers with polypyrrole layers for MOF-derived freestanding electrodes of flexible asymmetric supercapacitors[J]. Chemical Engineering Journal, 2023, 469: 143388. [56] IBRAHIM I, ZHENG S, FOO C Y, et al. Hierarchical nickel-based metal-organic framework/graphene oxide incorporated graphene nanoplatelet electrode with exceptional cycling stability for coin cell and pouch cell supercapacitors[J]. Journal of Energy Storage, 2021, 43: 103304. [57] ZHANG X, YANG S X, LU W, et al. MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2021, 592: 95-102. [58] JAYAKUMAR A, ANTONY R P, WANG R H, et al. MOF-derived hollow cage NixCo3-x O4 and their synergy with graphene for outstanding supercapacitors[J]. Small, 2017, 13(11): 10.1002/smll.201603102. [59] SHAO L, WANG Q, MA Z L, et al. A high-capacitance flexible solid-state supercapacitor based on polyaniline and metal-organic framework (UiO-66) composites[J]. Journal of Power Sources, 2018, 379: 350-361. |