[1] WU Q S, SIDDIQUE M S, YU W Z. Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: kinetics and mechanistic studies[J]. Journal of Hazardous Materials, 2021, 401: 123261. [2] LIU T, ZHOU H M, GRAHAM N, et al. 2D Kaolin ultrafiltration membrane with ultrahigh flux for water purification[J]. Water Research, 2019, 156: 425-433. [3] MARUTHAPANDI M, LUONG J H T, GEDANKEN A. Kinetic, isotherm and mechanism studies of organic dye adsorption on poly(4, 4'-oxybisbenzenamine) and copolymer of poly(4, 4'-oxybisbenzenamine-pyrrole) macro-nanoparticles synthesized by multifunctional carbon dots[J]. New Journal of Chemistry, 2019, 43(4): 1926-1935. [4] PIAI L, BLOKLAND M, VAN DER WAL A, et al. Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant[J]. Journal of Hazardous Materials, 2020, 388: 122028. [5] 全凤娇, 石彦彪, 孙红卫, 等. 卤氧化铋光催化去除环境污染物[J]. 华中师范大学学报(自然科学版), 2021, 55(6): 925-940+975. QUAN F J, SHI Y B, SUN H W, et al. Photocatalytic removal of environmental pollutants by bismuth oxyhalide[J]. Journal of Central China Normal University (Natural Sciences), 2021, 55(6): 925-940+975 (in Chinese). [6] OLA O, MAROTO-VALER M M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24: 16-42. [7] SAPKOTA K P, ISLAM M A, ABU HANIF M, et al. Hierarchical nanocauliflower chemical assembly composed of copper oxide and single-walled carbon nanotubes for enhanced photocatalytic dye degradation[J]. Nanomaterials, 2021, 11(3): 696. [8] PI W B, HUMAYUN M, LI Y, et al. Properly aligned band structures in B-TiO2/MIL53(Fe)/g-C3N4 ternary nanocomposite can drastically improve its photocatalytic activity for H2 evolution: investigations based on the experimental results[J]. International Journal of Hydrogen Energy, 2021, 46(42): 21912-21923. [9] MAHALA C, SHARMA M D, BASU M. ZnO nanosheets decorated with graphite-like carbon nitride quantum dots as photoanodes in photoelectrochemical water splitting[J]. ACS Applied Nano Materials, 2020, 3(2): 1999-2007. [10] ZHANG Y C, SUN Y, LI M Z, et al. The application of a three-dimensional flower-like heterojunction containing zinc oxide nanoparticles and modified carbon nitride for enhanced photodegradation[J]. Journal of Alloys and Compounds, 2022, 890: 161744. [11] AHMAD I. Comparative study of metal (Al, Mg, Ni, Cu and Ag) doped ZnO/g-C3N4 composites: efficient photocatalysts for the degradation of organic pollutants[J]. Separation and Purification Technology, 2020, 251: 117372. [12] ZHANG C J, JIA M Y, XU Z Y, et al. Constructing 2D/2D N-ZnO/g-C3N4 S-scheme heterojunction: efficient photocatalytic performance for norfloxacin degradation[J]. Chemical Engineering Journal, 2022, 430: 132652. [13] DHIMAN P, RANA G, KUMAR A, et al. ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review[J]. Environmental Chemistry Letters, 2022, 20(2): 1047-1081. [14] 富笑男, 郭叶飞, 陈锦涛. 均匀沉淀法制备ZnO、Fe/ZnO光催化剂[J]. 功能材料, 2021, 52(3): 3170-3176. FU X N, GUO Y F, CHEN J T. Synthesis of ZnO and Fe/ZnO photocatalyst with homogeneous precipitation method[J]. Journal of Functional Materials, 2021, 52(3): 3170-3176 (in Chinese). [15] GUO Y, FU X, LIU R, et al. Efficient green photocatalyst of Ag/ZnO nanoparticles for methylene blue photodegradation[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(5): 2716-28. [16] ZHANG Z Y, SUN Y S, WANG Y L, et al. Synthesis and photocatalytic activity of g-C3N4/ZnO composite microspheres under visible light exposure[J]. Ceramics International, 2022, 48(3): 3293-3302. [17] LI X, JIANG H P, MA C C, et al. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO[J]. Applied Catalysis B: Environmental, 2021, 283: 119638. [18] NI Y, WANG R, ZHANG W, et al. Graphitic carbon nitride (g-C3N4)-based nanostructured materials for photodynamic inactivation: synthesis, efficacy and mechanism [J]. Chemical Engineering Journal, 2021, 404. [19] 严 超, 周 迅, 籍浩齐, 等. α-Fe2O3/g-C3N4复合材料的制备及光催化性能[J]. 化工新型材料, 2022, 50(9): 201-205. YAN C, ZHOU X, JI H Q, et al. Preparation and photocatalytic properties of α- Fe2O3/g-C3N4 composites[J]. New Chemical Materials, 2022, 50(9): 201-205 (in Chinese). [20] MOHAMMADZADEH KAKHKI R. Polymeric organic-inorganic C3N4/ZnO high-performance material for visible light photodegradation of organic pollutants[J]. Polymer Bulletin, 2022: 1-21. [21] MULIK B B, BANKAR B D, MUNDE A V, et al. Electrocatalytic and catalytic CO2 hydrogenation on ZnO/g-C3N4 hybrid nanoelectrodes[J]. Applied Surface Science, 2021, 538: 148120. [22] DE JESUS MARTINS N, GOMES I C H, DA SILVA G T S T, et al. Facile preparation of ZnO: g-C3N4 heterostructures and their application in amiloride photodegradation and CO2 photoreduction[J]. Journal of Alloys and Compounds, 2021, 856: 156798. [23] LI B Y, ZHANG B N, ZHANG Y N, et al. Porous g-C3N4/TiO2 S-scheme heterojunction photocatalyst for visible-light driven H2-production and simultaneous wastewater purification[J]. International Journal of Hydrogen Energy, 2021, 46(64): 32413-32424. [24] GENG X L, WANG L, ZHANG L, et al. H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst[J]. Chemical Engineering Journal, 2021, 420: 129722. [25] SCHNEIDER J T, FIRAK D S, RIBEIRO R R, et al. Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations[J]. Physical Chemistry Chemical Physics, 2020, 22(27): 15723-15733. [26] MACHÍN A, FONTÁNEZ K, DUCONGE J, et al. Photocatalytic degradation of fluoroquinolone antibiotics in solution by Au@ZnO-rGO-gC3N4 composites[J]. Catalysts, 2022, 12(2): 166. [27] LINGHU C, YANG M, YU H, et al. Synthesis of the wire-in-tube structure porous C12H12O12S3Tb2@g-C3N4/ZnO luminescent composite in hydrothermal condition[J]. Journal of Alloys and Compounds, 2022, 900: 163397. [28] AMIR Z, MUHAMMAD K, ZAHID H, et al. Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction[J]. Zeitschrift Für Physikalische Chemie, 2021, 236(1): 53-66. [29] GAYATHRI M, SAKAR M, SATHEESHKUMAR E, et al. Insights into the mechanism of ZnO/g-C3N4 nanocomposites toward photocatalytic degradation of multiple organic dyes[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(12): 9347-9357. [30] PÉREZ-MOLINA Á, PASTRANA-MARTÍNEZ L M, PÉREZ-POYATOS L T, et al. One-pot thermal synthesis of g-C3N4/ZnO composites for the degradation of 5-fluoruracil cytostatic drug under UV-LED irradiation[J]. Nanomaterials, 2022, 12(3): 340. [31] LEELAVATHI H, ABIRAMI N, MURALIDHARAN R, et al. Sunlight-assisted degradation of textile pollutants and phytotoxicity evaluation using mesoporous ZnO/g-C3N4 catalyst[J]. RSC Advances, 2021, 11(43): 26800-26812. [32] CHIDHAMBARAM N, RAVICHANDRAN K. Fabrication of ZnO/g-C3N4 nanocomposites for enhanced visible light driven photocatalytic activity[J]. Materials Research Express, 2017, 4(7): 075037. [33] GAYATHRI K, TEJA Y N, PRAKASH R M, et al. In situ-grown ZnO particles on g-C3N4 layers: a direct Z-scheme-driven photocatalyst for the degradation of dye and pharmaceutical pollutants under solar irradiation[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(12): 9774-9784. [34] ALHANASH A M, AL-NAMSHAH K S, MOHAMED S K, et al. One-pot synthesis of the visible light sensitive C-doped ZnO@g-C3N4 for high photocatalytic activity through Z-scheme mechanism[J]. Optik, 2019, 186: 34-40. [35] ZHANG J Q, LI J, LIU X Y. Ternary nanocomposite ZnO-g-C3N4-Go for enhanced photocatalytic degradation of RhB[J]. Optical Materials, 2021, 119: 111351. [36] VIJAYAKUMAR T P, BENOY M D, DURAIMURUGAN J, et al. Effect of g-C3N4 on structural, optical, and photocatalytic properties of hexagonal cylinder-like twinned ZnO microcrystals prepared by the hydrothermal method[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(19): 24095-24106. [37] NGULLIE R C, ALASWAD S O, BHUVANESWARI K, et al. Synthesis and characterization of efficient ZnO/g-C3N4 nanocomposites photocatalyst for photocatalytic degradation of methylene blue[J]. Coatings, 2020, 10(5): 500. [38] MENG X, SHI L, CUI L, et al. Hydrothermal preparation of Mn0.5Cd0.5S/carbon nanotubes nanocomposite photocatalyst with improved H2 production performance [J]. Materials Research Bulletin, 2021, 135. [39] YU F C, LI Y M, LIU Z Y, et al. Preparation and photocatalytic properties of ZnO nanorods/g-C3N4 composite[J]. Applied Physics A, 2021, 127(11): 818. [40] WANG J, SUN Y C, FU L J, et al. A defective g-C3N4/RGO/TiO2 composite from hydrogen treatment for enhanced visible-light photocatalytic H2 production[J]. Nanoscale, 2020, 12(43): 22030-22035. [41] 陈美玲. 基于g-C3N4/ZnO纳米复合材料的制备及光催化性能研究[D]. 淮南: 安徽理工大学, 2019. CHEN M L. Preparation and photocatalytic properties of g-C3N4/ZnO nanocomposites[D].Huainan: Anhui University of Science & Technology, 2019 (in Chinese). [42] XUE M R, BAO X L, LI X Q, et al. A novel pathway toward efficient and stable C3N4-based photocatalyst for light driven H2 evolution: the synergistic effect between Pt and CoWO4[J]. International Journal of Hydrogen Energy, 2019, 44(52): 28113-28122. [43] HAN X, AN L, HU Y, et al. Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation[J]. Applied Catalysis B: Environmental, 2020, 265: 118539. [44] NIE Y C, YU F, WANG L C, et al. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism[J]. Applied Catalysis B: Environmental, 2018, 227: 312-321. [45] WU W T, ZHANG J Q, FAN W Y, et al. Remedying defects in carbon nitride to improve both photooxidation and H2 generation efficiencies[J]. ACS Catalysis, 2016, 6(5): 3365-3371. |