[1] KWAN D, KESARIA M, ANYEBE E A, et al. Recent trends in 8-14 μm type-II superlattice infrared detectors[J]. Infrared Physics & Technology, 2021, 116: 103756. [2] TING D Z, RAFOL S B, KEO S A, et al. Development of type-II superlattice long wavelength infrared focal plane arrays for land imaging[J]. Infrared Physics & Technology, 2021, 123: 104133. [3] LI S S, ZHANG J S, CHENG X Z, et al. Research on beam quality control technology of 2 μm antimonide semiconductor laser[J]. Frontiers in Physics, 2022, 10: 1047445. [4] CHEN F R, AN G, XU Z G. Performance analysis of three-body near-field thermophotovoltaic systems with an intermediate modulator[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2021, 258: 107395. [5] MAJEED S, AL-RAWI B K, An experimental study of some physical properties on gallium antimonide nanocrystals[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1095: 012003. [6] 佚 名.商务部、海关总署:决定对镓、锗相关物项实施出口管制[J]. 中国有色金属, 2023(14): 24. ANONYMITY. Ministry of Commerce and General Administration of Customs: decided to implement export control on gallium and germanium related items[J]. China Nonferrous Metals, 2023(14): 24 (in Chinese). [7] GILDENBAT G S, GOLDBERG Y A. Handbook series on semiconductor parameters Vol. 1: Si, Ge, C(Diamond), GaAs, GaP, GaSb, InAs, InP, InSb[M]. Beijing: World Scientific Publishing Company, 1996: 125. [8] ROGALSKI A. Material considerations for third generation infrared photon detectors[J]. Infrared Physics & Technology, 2007, 50(2/3): 240-252. [9] LEIFER H N, DUNLAP W C. Some properties of p-type gallium antimonide between 15°K and 925°K[J]. Physical Review, 1954, 95(1): 51-56. [10] BOITON P, GIACOMETTI N, DUFFAR T, et al. Bridgman crystal growth and defect formation in GaSb[J]. Journal of Crystal Growth, 1999, 206(3): 159-165. [11] REIJNEN L, BRUNTON R, GRANT I R. GaSb single-crystal growth by vertical gradient freeze[J]. Journal of Crystal Growth, 2005, 275(1/2): e595-e600. [12] PELOKE J R, STONE R R, YETTER L R. Statistical approach to growth of single crystals of GaSb by horizontal growing techniques[J]. Solid-State Electronics, 1965, 8(11): 861-867. [13] VOLOSHIN A E, NISHINAGA T, GE P. Perfection and homogeneity of space-grown GaSb∶Te crystals[J]. Crystallography Reports, 2002, 47(1): S136-S148. [14] ZHU X A, SHEU G, TSAI C T. Finite element modeling of dislocation reduction in GaAs and InP single crystals grown from the VGF process[J]. Finite Elements in Analysis and Design, 2006, 43(1): 81-92. [15] MARTINEZ R, AMIRHAGHI S, SMITH B, et al. Large diameter ‘ultra-flat' epitaxy ready GaSb substrates: requirements for MBE grown advanced infrared detectors[C]//SPIE Proceedings, Infrared Technology and Applications XXXVIII. Baltimore, Maryland. SPIE, 2012: 8353. [16] FURLONG M J, MARTINEZ B, TYBJERG M, et al. Growth and characterization of ≥6” epitaxy-ready GaSb substrates for use in large area infrared imaging applications[C]//SPIE Defense + Security. Proc SPIE 9451, Infrared Technology and Applications XLI, Baltimore, MD, USA. 2015, 9451: 182-189. [17] MARTINEZ R, TYBJERG M, FLINT P, et al. A study of the preparation of epitaxy-ready polished surfaces of (100) Gallium Antimonide substrates demonstrating ultra-low surface defects for MBE growth[C]//SPIE Defense+Security. Proc SPIE 9819, Infrared Technology and Applications XLII, Baltimore, MD, USA. 2016, 9819: 298-309. [18] GRAY N W, PRAX A, JOHNSON D, et al. Rapid development of high-volume manufacturing methods for epi-ready GaSb wafers up to 6” diameter for IR imaging applications[C]//SPIE Defense + Security. Proc SPIE 9819, Infrared Technology and Applications XLII, Baltimore, MD, USA. 2016, 9819: 274-284. [19] 吴光恒, 黄锡珉, 富淑清, 等. GaSb单晶的生长[J]. 人工晶体学报,1988, 17(Z1): 237. WU G H, HUANG X M, FU S Q, et al. Growth of GaSb single crystals[J]. Journal of Synthetic Crystals, 1988, 17(Z1): 237 (in Chinese). [20] 余海生, 蒋玉兰, 胡 建, 等. 水平法生长GaSb单晶的研究[J]. 固体电子学研究与进展, 1991, 11(2): 144-147. YU H S, JIANG Y L, HU J, et al. Investigation on bridgman growth of single crystal GaSb[J]. Research & Progress of Solid State Electronics, 1991, 11(2): 144-147 (in Chinese). [21] 邓志杰, 郑安生, 武希康, 等. p型GaSb单晶研制[J]. 稀有金属, 1992, 16(3): 215-217. DENG Z J, ZHENG A S, WU X K, et al. Development of p-type GaSb single crystal [J]. Chinese Journal of Rare Metals, 1992, 16(3): 215-217 (in Chinese). [22] 汪鼎国. 用水平布里兹曼法生长GaSb单晶[J]. 稀有金属, 1995, 19(1): 75-78. WANG D G. Growth of GaSb single crystal by horizontal Bridgman method[J]. Chinese Journal of Rare Metals, 1995, 19(1): 75-78 (in Chinese). [23] 余 辉, 叶式中. 在锑化镓中掺入等电子杂质的研究[C]//首届中国功能材料及其应用学术会议论文集. 桂林, 1992: 177-178. YU H, YE S Z. Study on the inclusion of isoelectronic impurities in gallium antimonide // Proceedings of the First China Conference on Functional Materials and Their Applications. Guilin, 1992: 177-178 (in Chinese). [24] 赵有文, 段满龙, 董志远, 等. 高质量、实用化InP、GaSb和InAs单晶衬底批量生产[C]. 第十七届全国化合物半导体材料微波器件和光电器件学术会议论文集, 2012. ZHAO Y W, DUAN M L, DONG Z Y, et al. Quantity production of single crystal InP, GaSb and InAs substrates for practical device application[C]. Proceedings of the 17th National Conference on Compound Semiconductor Materials Microwave Devices and Optoelectronic Devices, 2012(in Chinese). [25] 杨 俊, 段满龙, 卢 伟, 等. 低位错密度4 inch GaSb(100)单晶生长及高质量衬底制备[J]. 人工晶体学报, 2017, 46(5): 820-824. YANG J, DUAN M L, LU W, et al. Growth of 4 inch diameter GaSb(100) single crystal with low dislocation density and high quality substrate preparation[J]. Journal of Synthetic Crystals, 2017, 46(5): 820-824 (in Chinese). [26] 练小正, 李璐杰, 张志鹏, 等. 大尺寸高质量GaSb单晶研究[J]. 人工晶体学报, 2016, 45(4): 901-905. LIAN X Z, LI L J, ZHANG Z P, et al. Research of large size GaSb single crystal with high quality[J]. Journal of Synthetic Crystals, 2016, 45(4): 901-905 (in Chinese). [27] YAN B, LIU W H, YU Z J, et al. Temperature dynamic compensation vertical Bridgman method growth of high-quality GaSb single crystals[J]. Journal of Crystal Growth, 2023, 602: 126988. [28] ZHIRNOV A M, MARICHEV A E, EPOLETOV V S, et al. Technology of nanoplanar surface preparation of GaSb and InP substrates[J]. Journal of Physics: Conference Series, 2020, 1697(1): 012248. [29] LEVCHENKO I, TOMASHYK V, MALANYCH G, et al. Improvement the InAs, InSb, GaAs and GaSb surface state by nanoscale wet etching[J]. Applied Nanoscience, 2022, 12(4): 1139-1145. [30] 边子夫, 李 晖, 徐世海, 等. GaSb单晶片CMP工艺的研究[J]. 微纳电子技术, 2017, 54(11): 797-800. BIAN Z F, LI H, XU S H, et al. Research on the CMP process of the GaSb single crystal wafer[J]. Micronanoelectronic Technology, 2017, 54(11): 797-800 (in Chinese). [31] YAN B, LIANG H Y, LIU Y F, et al. Chemical mechanical polishing of GaSb wafers for significantly improved surface quality[J]. Frontiers in Materials, 2021, 8: 773131. [32] 冯银红, 沈桂英, 赵有文, 等. 无位错Te-GaSb(100)单晶抛光衬底的晶格完整性[J]. 人工晶体学报, 2022, 51(6): 1003-1011. FENG Y H, SHEN G Y, ZHAO Y W, et al. Lattice perfection of dislocation-free (100) Te-GaSb single crystal polished substrate[J]. Journal of Synthetic Crystals, 2022, 51(6): 1003-1011 (in Chinese). [33] 程 雨, 刘京明, 苏 杰, 等. GaSb晶片表面残留杂质分析[J]. 半导体光电, 2016, 37(1): 55-58. CHENG Y, LIU J M, SU J, et al. Residual impurities analysis on the surface of gallium atimonide wafers[J]. Semiconductor Optoelectronics, 2016, 37(1): 55-58 (in Chinese). [34] DUTTA P S, BHAT H L, KUMAR V. The physics and technology of gallium antimonide: an emerging optoelectronic material[J]. Journal of Applied Physics, 1997, 81(9): 5821-5870. [35] TSUNODA K, MATSUKURA Y, SUZUKI R, et al. Thermal instability of GaSb surface oxide[C]//SPIE Defense + Security. Proc SPIE 9819, Infrared Technology and Applications XLII, Baltimore, MD, USA. 2016, 9819: 210-215. [36] LIU Z Y, KUECH T F, SAULYS D A. A comparative study of GaSb (100) surface passivation by aqueous and nonaqueous solutions[J]. Applied Physics Letters, 2003, 83(13): 2587-2589. [37] ROBINSON J A, MOHNEY S E. Characterization of sulfur passivated n-GaSb using transmission electron microscopy and the influence of passivationon ohmic contact resistance[J]. Journal of Applied Physics, 2004, 96(5): 2684-2688. [38] LEBEDEV M V, LVOVA T V, SHAKHMIN A L, et al. Development of the physicochemical properties of the GaSb(100) surface in ammonium sulfide solutions[J]. Semiconductors, 2019, 53(7): 892-900. [39] WANG B, ZHIPENGWEI, LI M, et al. The surface and optical properties of passivated GaSb with different passivating agents[J]. Integrated Ferroelectrics, 2013, 146(1): 110-114. [40] 安 宁, 刘国军, 李占国, 等. 硫钝化可提高GaSb表面光学性质[J]. 长春理工大学学报(自然科学版), 2015, 38(1): 107-111. AN N, LIU G J, LI Z G, et al. The improvement of gallium antimonide surface by sulphur passivation[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2015, 38(1): 107-111 (in Chinese). [41] MURAPE D M, EASSA N, NYAMHERE C, et al. Improved GaSb surfaces using a (NH4)2S/(NH4)2SO4 solution[J]. Physica B: Condensed Matter, 2012, 407(10): 1675-1678. [42] BAKULIN A V, CHUMAKOVA L S, KORCHUGANOV A V, et al. Role of oxygen and fluorine in passivation of the GaSb(111) surface depending on its termination[J]. Crystals, 2022, 12(477): 477. [43] ALLEN L P, TETREAULT T G, SANTEUFEMIO C, et al. Gas-cluster ion-beam smoothing of chemo-mechanical-polish processed GaSb(100) substrates[J]. Journal of Electronic Materials, 2003, 32(8): 842-848. [44] KRISHNASWAMI K, VANGALA S R, ZHU B, et al. Epitaxial growth on gas cluster ion-beam processed GaSb substrates using molecular-beam epitaxy[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004, 22(3): 1455-1459. [45] KRISHNASWAMI K, VANGALA S R, DAUPLAISE H M, et al. Molecular beam epitaxy on gas cluster ion beam-prepared GaSb substrates: towards improved surfaces and interfaces[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1619-1626. [46] 郝宏玥, 吴东海, 徐应强, 等. 高性能锑化物超晶格中红外探测器研究进展(特邀)[J]. 红外与激光工程, 2022, 51(3): 32-41. HAO H Y, WU D H, XU Y Q, et al. Research progress of high performance Sb-based superlattice midwave infrared photodetector (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 32-41(in Chinese). [47] 常发冉, 蒋 志, 王国伟, 等. 锑化物超晶格长波红外焦平面探测器研究进展[J]. 中国科学: 物理学 力学 天文学, 2021, 51(2): 32-49. CHANG F R, JIANG Z, WANG G W, et al. Progress of long wavelength infrared focal plane arrays based on antimonide compounds superlattice[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(2): 32-49 (in Chinese). [48] 尚林涛, 王 静, 邢伟荣, 等. Ⅱ类超晶格红外探测器技术国内外进展[J]. 激光与红外, 2021, 51(6): 683-694. SHANG L T, WANG J, XING W R, et al. Advances in type-Ⅱ superlattice infrared detector technology at home and abroad[J]. Laser & Infrared, 2021, 51(6): 683-694 (in Chinese). [49] HAO R T, XU Y Q, ZHOU Z Q, et al. MBE growth of very short period InAs/GaSb type-II superlattices on (0 0 1)GaAs substrates[J]. Journal of Physics D: Applied Physics, 2007, 40(21): 6690-6693. [50] 陈益航, 杨成奥, 王天放, 等. 锑化物半导体激光器研究进展[J]. 光电技术应用, 2022, 37(6): 33-37. CHEN Y H, YANG C A, WANG T F, et al. Research progress of antimonide semiconductor lasers[J]. Electro-Optic Technology Application, 2022, 37(6): 33-37 (in Chinese). [51] 杨成奥, 张 一, 尚金铭, 等. 2~4 μm中红外锑化物半导体激光器研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 163-171. YANG C A, ZHANG Y, SHANG J M, et al. Research progress of 2-4 μm mid-infrared antimonide semiconductor lasers(Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 163-171 (in Chinese). [52] SHAH Y T. TPV Technology[J]. Advanced Power Generation Systems, 2022: 349-414. [53] ZHOU Z J, WU H J, JIANG C C, ZHANG B, et al. Theoretical study of selective absorber and narrowband emitter based on metamaterial matched with InGaAsSb cells for an STPV system[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 287: 108016. [54] ZHANG H H, WANG C L, SHU Y F, et al. Tunability of a broad-band selective metamaterial emitter in thermophotovoltaic systems[J]. International Journal of Heat and Mass Transfer, 2023, 216: 124583. [55] UTLU Z. Thermophotovoltaic applications in waste heat recovery systems: example of GaSb cell[J]. International Journal of Low-Carbon Technologies, 2020, 15(2): 277-286. [56] ALI GAMEL M M, LEE H J, WAN EMILIN SULIZA WAN ABDUL RASHID, et al. A review on thermophotovoltaic cell and its applications in energy conversion: issues and recommendations[J]. Materials, 2021, 14(17): 4944. |