[1] NAKAZAWA K I. Electrical and optical properties of stannite-type quaternary semiconductor thin films[J]. Japanese Journal of Applied Physics, 1988, 27(11R): 2094. [2] KATAGIRI H, SASAGUCHI N, HANDO S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors[J]. Solar Energy Materials and Solar Cells, 1997, 49(1/2/3/4): 407-414. [3] GUO Q J, FORD G M, YANG W C, et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals[J]. Journal of the American Chemical Society, 2010, 132(49): 17384-17386. [4] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465. [5] GONG Y C, ZHANG Y F, JEDLICKA E, et al. Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V[J]. Science China Materials, 2021, 64(1): 52-60. [6] YAN C, HUANG J L, SUN K W, et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment[J]. Nature Energy, 2018, 3(9): 764-772. [7] LI J J, HUANG Y C, HUANG J L, et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 Kesterite thin-film solar cells by engineering of local chemical environment[J]. Advanced Materials, 2020, 32(52):202005268. [8] ZHOU J Z, XU X, WU H J, et al. Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency[J]. Nature Energy, 2023, 8(5): 526-535. [9] Interactive Best Research-Cell Efficiency Chart, https://www.nrel.gov/PV/interactive-cell-efficiency.html. [10] LI J J, HUANG J L, CONG J L, et al. Large-grain spanning monolayer Cu2ZnSnSe4 thin-film solar cells grown from metal precursor[J]. Small, 2022, 18(9): 2105044. [11] CHEN W, DAHLIAH D, RIGNANESE G M, et al. Origin of the low conversion efficiency in Cu2ZnSnS4 kesterite solar cells: the actual role of cation disorder[J]. Energy & Environmental Science, 2021, 14(6): 3567-3578. [12] HAO X J, SUN K W, YAN C, et al. Large Voc improvement and 9.2% efficient pure sulfide Cu2ZnSnS4 solar cells by heterojunction interface engineering[C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). June 5-10, 2016, Portland, OR, USA. IEEE, 2016: 2164-2168. [13] WALSH A, CHEN S Y, WEI S H, et al. Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4[J]. Advanced Energy Materials, 2012, 2(4): 400-409. [14] GOKMEN T, GUNAWAN O, TODOROV T K, et al. Band tailing and efficiency limitation in kesterite solar cells[J]. Applied Physics Letters, 2013, 103(10): 103506. [15] SINGH O P, SHARMA A, GOUR K S, et al. Fast switching response of Na-doped CZTS photodetector from visible to NIR range[J]. Solar Energy Materials and Solar Cells, 2016, 157: 28-34. [16] SCHORR S. The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study[J]. Solar Energy Materials and Solar Cells, 2011, 95: 1482-1488. [17] CHEN S Y, GONG X G, WALSH A, et al. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of Ⅱ-Ⅵ and Ⅰ-Ⅲ-Ⅵ2 compounds[J]. Physical Review B, 2009, 79(16): 165211. [18] MITZI D B, GUNAWAN O, TODOROV T K, et al. The path towards a high-performance solution-processed kesterite solar cell[J]. Solar Energy Materials and Solar Cells, 2011, 95(6): 1421-1436. [19] DUAN B W, SHI J J, LI D M, et al. Underlying mechanism of the efficiency loss in CZTSSe solar cells: disorder and deep defects[J]. Science China Materials, 2020, 63(12): 2371-2396. [20] CHEN S Y, GONG X G, WALSH A, et al. Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: first-principles insights[J]. Applied Physics Letters, 2009, 94(4): 041903. [21] CHEN S Y, WALSH A, GONG X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers[J]. Advanced Materials, 2013, 25(11): 1522-1539. [22] SAHU M, MINNAM REDDY V R, PARK C, et al. Review article on the lattice defect and interface loss mechanisms in kesterite materials and their impact on solar cell performance[J]. Solar Energy, 2021, 230: 13-58. [23] NWAMBAEKWE K C, JOHN-DENK V S, DOUMAN S F, et al. Crystal engineering and thin-film deposition strategies towards improving the performance of kesterite photovoltaic cell[J]. Journal of Materials Research and Technology, 2021, 12: 1252-1287. [24] NUGROHO H S, REFANTERO G, SEPTIANI N L W, et al. A progress review on the modification of CZTS(e)-based thin-film solar cells[J]. Journal of Industrial and Engineering Chemistry, 2022, 105: 83-110. [25] BAID M, HASHMI A, JAIN B, et al. A comprehensive review on Cu2ZnSnS4 (CZTS) thin film for solar cell: forecast issues and future anticipation[J]. Optical and Quantum Electronics, 2021, 53(11): 656. [26] PAL K, SINGH P, BHADURI A, et al. Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell: a review[J]. Solar Energy Materials and Solar Cells, 2019, 196: 138-156. [27] FAN F J, WU L, GONG M, et al. Linearly arranged polytypic CZTSSe nanocrystals[J]. Scientific Reports, 2012, 2: 952. [28] WU L, WANG Q, ZHUANG T T, et al. A library of polytypic copper-based quaternary sulfide nanocrystals enables efficient solar-to-hydrogen conversion[J]. Nature Communications, 2022, 13: 5414. [29] NAGAOKA A, YOSHINO K, TANIGUCHI H, et al. Growth of Cu2ZnSnS4 single crystal by traveling heater method[J]. Japanese Journal of Applied Physics, 2011, 50(12R): 128001. [30] NAGAOKA A, KATSUBE R, NAKATSUKA S, et al. Growth and characterization of Cu2ZnSn(Sx Se1-x)4 single crystal grown by traveling heater method[J]. Journal of Crystal Growth, 2015, 423: 9-15. [31] NAGAOKA A, SCARPULLA M A, YOSHINO K. Na-doped Cu2ZnSnS4 single crystal grown by traveling-heater method[J]. Journal of Crystal Growth, 2016, 453: 119-123. [32] NAGAOKA A, MIYAKE H, TANIYAMA T, et al. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal[J]. Applied Physics Letters, 2014, 104(15): 152101. [33] ZHOU H P, SONG T B, HSU W C, et al. Rational defect passivation of Cu2ZnSn(S, Se)4 photovoltaics with solution-processed Cu2ZnSnS4: Na nanocrystals[J]. Journal of the American Chemical Society, 2013, 135(43): 15998-16001. [34] LIU B, GUO J, HAO R T, et al. Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell[J]. Solar Energy, 2020, 201: 219-226. [35] NITSCHE R, BÖLSTERLI H U, LICHTENSTEIGER M. Crystal growth by chemical transport reactions—I[J]. Journal of Physics and Chemistry of Solids, 1961, 21(3/4): 199-205. [36] NITSCHE R, SARGENT D F, WILD P. Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport[J]. Journal of Crystal Growth, 1967, 1(1): 52-53. [37] LEVCENKO S, TEZLEVAN V E, ARUSHANOV E, et al. Free-to-bound recombination in near stoichiometric Cu2ZnSnS4 single crystals[J]. Physical Review B, 2012, 86(4): 045206. [38] COLOMBARA D, DELSANTE S, BORZONE G, et al. Crystal growth of Cu2ZnSnS4 solar cell absorber by chemical vapor transport with I2[J]. Journal of Crystal Growth, 2013, 364: 101-110. [39] BOISTELLE R, ASTIER J P. Crystallization mechanisms in solution[J]. Journal of Crystal Growth, 1988, 90(1/2/3): 14-30. [40] MELLIKOV E, MEISSNER D, ALTOSAAR M, et al. CZTS monograin powders and thin films[J]. Advanced Materials Research, 2011, 222: 8-13. [41] MELLIKOV E, ALTOSAAR M, RAUDOJA J, et al. Cu2(ZnxSn2-x)(SySe1-y)4 monograin materials for photovoltaics[J]. Materials Challenges in Alternative and Renewable: Ceramic Transactions, 2010, 224:137-141. [42] ZHANG J, LIAO J, SHAO L X, et al. Effect of Fe content on Cu2FexZn1-xSnS4 single crystals fabricated by flux growth method[J]. Journal of Physics D: Applied Physics, 2018, 51(29): 295107. [43] TIMMO K, ALTOSAAR M, RAUDOJA J, et al. Sulfur-containing Cu2ZnSnSe4 monograin powders for solar cells[J]. Solar Energy Materials and Solar Cells, 2010, 94(11): 1889-1892. [44] TIMMO K, ALTOSAAR M, RAUDOJA J, et al. Chemical etching of Cu2ZnSn(S, Se)4 monograin powder[C]//2010 35th IEEE Photovoltaic Specialists Conference. June 20-25, 2010, Honolulu, HI, USA. IEEE, 2010: 1982-1985. [45] BÄR M, SCHUBERT B A, MARSEN B, et al. Impact of KCN etching on the chemical and electronic surface structure of Cu2ZnSnS4 thin-film solar cell absorbers[J]. Applied Physics Letters, 2011, 99(15): 152111. [46] BUFFIÈRE M, BRAMMERTZ G, SAHAYARAJ S, et al. KCN chemical etch for interface engineering in Cu2ZnSnSe4 solar cells[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14690-14698. [47] DURANT B K, PARKINSON B. Photovoltaic response of natural Kesterite crystals[J]. Solar Energy Materials and Solar Cells, 2016, 144: 586-591. [48] COLLORD A D, XIN H, HILLHOUSE H W. Combinatorial exploration of the effects of intrinsic and extrinsic defects in Cu2ZnSn(S, Se)4[J]. IEEE Journal of Photovoltaics, 2015, 5(1): 288-298. [49] LEVANYUK A P, OSIPOV V V. Edge luminescence of direct-gap semiconductors[J]. Uspekhi Fizicheskih Nauk, 1981, 133(3): 427. [50] TANAKA K, MIYAMOTO Y, UCHIKI H, et al. Donor-acceptor pair recombination luminescence from Cu2ZnSnS4 bulk single crystals[J]. Physica Status Solidi (a), 2006, 203(11): 2891-2896. [51] HÖNES K, ZSCHERPEL E, SCRAGG J, et al. Shallow defects in Cu2ZnSnS4[J]. Physica B: Condensed Matter, 2009, 404(23/24): 4949-4952. [52] SCHORR S, HOEBLER H J, TOVAR M. A neutron diffraction study of the stannite-kesterite solid solution series[J]. European Journal of Mineralogy, 2007, 19(1): 65-73. [53] GROSSBERG M, KRUSTOK J, RAADIK T, et al. Photoluminescence study of disordering in the cation sublattice of Cu2ZnSnS4[J]. Current Applied Physics, 2014, 14(11): 1424-1427. [54] KASK E, GROSSBERG M, JOSEPSON R, et al. Defect studies in Cu2ZnSnSe4 and Cu2ZnSn(Se0.75S0.25)4 by admittance and photoluminescence spectroscopy[J]. Materials Science in Semiconductor Processing, 2013, 16(3): 992-996. [55] CHEN S Y, GONG X G, WALSH A, et al. Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4[J]. Applied Physics Letters, 2010, 96(2): 021902. [56] ZHU X P, ZHANG J, LIAO J, et al. Transformation of carrier recombination mechanism as increasing the Germanium content in Cu2ZnGexSn1-xS4 single crystal prepared by molten salt method[J]. Optical Materials, 2023, 139: 113744. [57] RAVINDIRAN M, PRAVEENKUMAR C. Status review and the future prospects of CZTS based solar cell——a novel approach on the device structure and material modeling for CZTS based photovoltaic device[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 317-329. [58] MA S Y, MA C H, LU X S, et al. Optical characterization of bandedge electronic structure and defect states in Cu2ZnSnS4[J]. Journal of Infrared and Millimeter Waves, 2020, 39: 92-98. [59] CHEN D G, RAVINDRA N M. Electronic and optical properties of Cu2ZnGeX4 (X=S, Se and Te) quaternary semiconductors[J]. Journal of Alloys and Compounds, 2013, 579: 468-472. [60] DUAN H S, YANG W B, BOB B, et al. The role of sulfur in solution-processed Cu2ZnSn(S, Se)4 and its effect on defect properties[J]. Advanced Functional Materials, 2013, 23(11): 1466-1471. [61] PATIL S J, BULAKHE R N, LOKHANDE C D. Liquefied petroleum gas (LPG) sensing using spray deposited Cu2ZnSnS4 thin film[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 310-316. [62] 张 军, 廖 峻, 薛书文, 等. 一种单晶颗粒薄膜及其气体传感器的制备方法: CN110026325B. 2022-04-26. ZHANG J, LIAO J, XUE S W, et al. A preparation method for single crystal particle thin film and its gas sensor: CN110026325B. 2022-04-26 (in Chinese). [63] SURYAWANSHI M, SHIN S W, GHORPADE U, et al. A facile and green synthesis of colloidal Cu2ZnSnS4 nanocrystals and their application in highly efficient solar water splitting[J]. Journal of Materials Chemistry A, 2017, 5(9): 4695-4709. [64] NAUTIYAL H, LOHANI K, MUKHERJEE B, et al. Mechanochemical synthesis of sustainable ternary and quaternary nanostructured Cu2SnS3, Cu2ZnSnS4, and Cu2ZnSnSe4 chalcogenides for thermoelectric applications[J]. Nanomaterials, 2023, 13(2): 366. [65] MAEDA T, KAWABATA A, WADA T. First-principles study on alkali-metal effect of Li, Na, and K in Cu2 ZnSnS4 and Cu2 ZnSnSe4[J]. Physica Status Solidi C, 2015, 12(6): 631-637. |