欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2024, Vol. 53 ›› Issue (6): 913-921.

• 综合评述 •    下一篇

金刚石基GaN界面热阻控制研究进展

兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟   

  1. 中国电子科技集团公司第四十六研究所,天津 300220
  • 收稿日期:2023-11-02 出版日期:2024-06-15 发布日期:2024-06-20
  • 通信作者: 王英民,博士,研究员。E-mail:wymzll@126.com
  • 作者简介:兰飞飞(1986—),女,吉林省人,博士研究生。E-mail:lanfeifei0601@126.com

Research Progress on Controlling the Thermal Boundary Resistance of GaN on Diamond

LAN Feifei, LIU Shasha, FANG Shishu, WANG Yingmin, CHENG Hongjuan   

  1. China Electronics Technology Group Corp 46th Research Institute, Tianjin 300220, China
  • Received:2023-11-02 Online:2024-06-15 Published:2024-06-20

摘要: GaN高电子迁移率晶体管(HEMT)在雷达、5G通信、航空航天等领域发挥了重要作用,随着GaN HEMT功率密度的提升,器件热效应显著,散热成为了GaN HEMT性能提升的瓶颈。解决GaN HEMT器件散热问题的有效途径是采用高导热的衬底材料取代现役的SiC、Si衬底。金刚石是目前已知热导率(>2 000 W·m-1·K-1)最高的材料,高导热金刚石衬底能够全面解决GaN HEMT器件的热效应,成倍提升GaN器件的功率密度。本文阐述了金刚石基GaN的技术优势、主要实现途径,以及界面热阻对金刚石上GaN器件性能的影响。综述了国内外金刚石基GaN界面热阻控制的最新研究进展,分析了金刚石上GaN界面热阻研究过程中面临的主要问题和发展趋势。明确了在介质层材料选择有限的条件下,需要从GaN和金刚石的界面质量入手进一步降低界面热阻,提升GaN器件的性能。

关键词: 氮化镓, 金刚石基GaN, 界面热阻, 介质层, 功率密度, HEMT

Abstract: GaN high electron mobility transistor (HEMT) played major roles in radar, 5G communication, aerospace and other fields. With increasingly higher output powers developed, however, heat dissipation has become a severely problem limiting the device performance and deteriorating the device reliability and life span. Diamond has the highest thermal conductivity (>2 000 W·m-1·K-1) of the bulk material. Integration diamond film with GaN HEMT can rapidly extract heat from the junction, which may increase the power density. In this paper, the technical advantages and realization approaches of GaN on diamond are stated, and the effect of the thermal boundary resistance on heat dissipation is discussed. The latest researches on the reducing of the thermal boundary resistance are thoroughly reviewed, the difficulties and development in controlling the thermal boundary resistance are also analyzed. It is clarified that under the condition of limited selection of dielectric layer materials, the thermal boundary resistance can be reduced through the enhancing of the quality of the interface between GaN and diamond.

Key words: GaN, GaN on diamond, thermal boundary resistance, dielectric layer, power density, HEMT

中图分类号: