人工晶体学报 ›› 2024, Vol. 53 ›› Issue (7): 1087-1105.
• 综合评述 • 下一篇
李洋1,2, 崔楠2, 傅年庆3, 陈有辰3, 潘书生1, 林生晃2
收稿日期:
2024-02-28
出版日期:
2024-07-15
发布日期:
2024-07-23
通信作者:
崔楠,博士,副研究员。E-mail:cuinan@sslab.org.cn; 潘书生,博士,教授。E-mail:sspan@gzhu.edu.cn; 林生晃,博士,研究员。E-mail:linshenghuang@sslab.org.cn
作者简介:
李洋(1998—),男,广东省人,硕士研究生。E-mail:liyoung61@163.com
基金资助:
LI Yang1,2, CUI Nan2, FU Nianqing3, CHEN Youchen3, PAN Shusheng1, LIN Shenghuang2
Received:
2024-02-28
Online:
2024-07-15
Published:
2024-07-23
摘要: 随着新型智能化电子技术的快速发展,人们对高性能、轻薄、柔性消费型电子产品的需求日益迫切。传统的硬质硅基器件难以满足可穿戴设备、电子皮肤等领域对电子元件的特殊需求,二维(2D)材料因优异的光电性质在新兴电子产业中备受瞩目,因此开发柔性透明2D光电器件成为前沿科技中的热门研究领域。本文详细介绍了柔性透明2D光电器件中的2D材料、透明电极、柔性透明衬底/介电层等关键构成,综合论述了关于柔性透明晶体管、光电探测器、传感器、电容器等器件在可穿戴电子、透明智能显示、医疗监测等领域中的广泛应用前景。最后,总结展望了柔性透明2D光电器件目前所面临的挑战与发展前景。相信随着材料科学、纳米技术和制造工艺的不断革新与发展,柔性透明电子技术将会更加成熟、可靠,为人类生活带来更多便利和可能性。
中图分类号:
李洋, 崔楠, 傅年庆, 陈有辰, 潘书生, 林生晃. 柔性透明二维光电器件在智能化信息领域中的应用[J]. 人工晶体学报, 2024, 53(7): 1087-1105.
LI Yang, CUI Nan, FU Nianqing, CHEN Youchen, PAN Shusheng, LIN Shenghuang. Applications of Flexible Transparent 2D Optoelectronic Devices in Intelligent Information Fields[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1087-1105.
[1] AHN J H, HONG B H. Graphene for displays that bend[J]. Nature Nanotechnology, 2014, 9(10): 737-738. [2] AKINWANDE D, PETRONE N, HONE J. Two-dimensional flexible nanoelectronics[J]. Nature Communications, 2014, 5: 5678. [3] LEE J, HAN T H, PARK M H, et al. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes[J]. Nature Communications, 2016, 7: 11791. [4] WU W Z, WANG L, LI Y L, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics[J]. Nature, 2014, 514: 470-474. [5] JANG H, LEE W, WON S M, et al. Quantum confinement effects in transferrable silicon nanomembranes and their applications on unusual substrates[J]. Nano Letters, 2013, 13(11): 5600-5607. [6] GEORGIOU T, JALIL R, BELLE B D, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics[J]. Nature Nanotechnology, 2013, 8: 100-103. [7] PARK M, PARK Y J, CHEN X, et al. MoS2-based tactile sensor for electronic skin applications[J]. Advanced Materials, 2016, 28(13): 2556-2562. [8] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102-1120. [9] PETRONE N, CHARI T R, MERIC I, et al. Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride[J]. ACS Nano, 2015, 9(9): 8953-8959. [10] BRITNELL L, RIBEIRO R M, ECKMANN A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314. [11] ZHENG Z X, GUO C Y, WANG E H, et al. The oxidation and thermal stability of two-dimensional transition metal carbides and/or carbonitrides (MXenes) and the improvement based on their surface state[J]. Inorganic Chemistry Frontiers, 2021, 8(9): 2164-2182. [12] LIU Y D, ANG K W. Monolithically integrated flexible black phosphorus complementary inverter circuits[J]. ACS Nano, 2017, 11(7): 7416-7423. [13] TEDSTONE A A, LEWIS D J, HAO R, et al. Mechanical properties of molybdenum disulfide and the effect of doping: an in situ TEM study[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20829-20834. [14] KIM T I, PARK I J, KANG S M, et al. Enhanced triboelectric nanogenerator based on tungsten disulfide via thiolated ligand conjugation[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21299-21309. [15] LIU Z K, LAU S P, YAN F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing[J]. Chemical Society Reviews, 2015, 44(15): 5638-5679. [16] ZHANG F Z, YANG K, LIU G J, et al. Recent advances on graphene: synthesis, properties and applications[J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107051. [17] GULZAR A, YANG P P, HE F, et al. Bioapplications of graphene constructed functional nanomaterials[J]. Chemico-Biological Interactions, 2017, 262: 69-89. [18] JO G, CHOE M, LEE S, et al. The application of graphene as electrodes in electrical and optical devices[J]. Nanotechnology, 2012, 23(11): 112001. [19] SON J, LEE S, KIM S J, et al. Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor[J]. Nature Communications, 2016, 7: 13261. [20] CHITTIBABU S K, CHINTAGUMPALA K. Evolution of 2D materials conducive to the wearable physical sensors for structural health assessment[J]. Microelectronic Engineering, 2023, 276: 112013. [21] KIM S, KWON H J, LEE S, et al. Low-power flexible organic light-emitting diode display device[J]. Advanced Materials, 2011, 23(31): 3511-3516. [22] MENG X C, CAI Z R, ZHANG Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells[J]. Nature Communications, 2020, 11: 3016. [23] KIM H, HORWITZ J S, KUSHTO G P, et al. Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes[J]. Applied Physics Letters, 2001, 79(3): 284-286. [24] CHO H, YUN Y H. Characterization of indium tin oxide (ITO) thin films prepared by a sol-gel spin coating process[J]. Ceramics International, 2011, 37(2): 615-619. [25] SHIGESATO Y, PAINE D C. A microstructural study of low resistivity tin-doped indium oxide prepared by d.c. magnetron sputtering[J]. Thin Solid Films, 1994, 238(1): 44-50. [26] DONG Q, HARA Y, VROUWENVELDER K T, et al. Superflexibility of ITO electrodes via submicron patterning[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10339-10346. [27] WANG H L, LIAO S Y, BAI X P, et al. Highly flexible indium tin oxide nanofiber transparent electrodes by blow spinning[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32661-32666. [28] GEIM A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534. [29] BAE S K, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5: 574-578. [30] PARK K, LEE D K, KIM B S, et al. Stretchable, transparent zinc oxide thin film transistors[J]. Advanced Functional Materials, 2010, 20(20): 3577-3582. [31] HAN T H, LEE Y, CHOI M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nature Photonics, 2012, 6: 105-110. [32] ZHANG Z K, DU J H, ZHANG D D, et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes[J]. Nature Communications, 2017, 8: 14560. [33] CHEN Y, ZHANG N, LI Y F, et al. Microscale-patterned graphene electrodes for organic light-emitting devices by a simple patterning strategy[J]. Advanced Optical Materials, 2018, 6(13): 1701348. [34] HE Q Y, WU S X, GAO S, et al. Transparent, flexible, all-reduced graphene oxide thin film transistors[J]. ACS Nano, 2011, 5(6): 5038-5044. [35] ZHANG C F, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance[J]. Advanced Materials, 2017, 29(36): 1702678. [36] FAN X. Doping and design of flexible transparent electrodes for high-performance flexible organic solar cells: recent advances and perspectives[J]. Advanced Functional Materials, 2021, 31(8): 2009399. [37] KUMAR S, KANG D, NGUYEN V H, et al. Application of titanium-carbide MXene-based transparent conducting electrodes in flexible smart windows[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40976-40985. [38] LEE S, KIM E H, YU S, et al. Polymer-laminated Ti3C2TX MXene electrodes for transparent and flexible field-driven electronics[J]. ACS Nano, 2021, 15(5): 8940-8952. [39] DE S, LYONS P E, SOREL S, et al. Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites[J]. ACS Nano, 2009, 3(3): 714-720. [40] KIM S, YIM J, WANG X H, et al. Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells[J]. Advanced Functional Materials, 2010, 20(14): 2310-2316. [41] CHO D Y, EUN K, CHOA S H, et al. Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells[J]. Carbon, 2014, 66: 530-538. [42] FERRER-ANGLADA N, PÉREZ-PUIGDEMONT J, FIGUERAS J, et al. Flexible, transparent electrodes using carbon nanotubes[J]. Nanoscale Research Letters, 2012, 7(1): 571. [43] LEE M S, LEE K, KIM S Y, et al. High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures[J]. Nano Letters, 2013, 13(6): 2814-2821. [44] YANG C, GU H W, LIN W, et al. Silver nanowires: from scalable synthesis to recyclable foldable electronics[J]. Advanced Materials, 2011, 23(27): 3052-3056. [45] ARAKI T, MANDAMPARAMBIL R, VAN BRAGT D M P, et al. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques[J]. Nanotechnology, 2016, 27(45): 45LT02. [46] CHEN X L, CHEN J Y, HUANG L P, et al. Highly conductive omnidirectionally stretchable 2D transparent copper mesh electrodes and applications in optoelectronic devices[J]. Advanced Materials Technologies, 2023, 8(7): 202201406. [47] LI L J, ZHANG B, ZOU B H, et al. Fabrication of flexible transparent electrode with enhanced conductivity from hierarchical metal grids[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39110-39115. [48] HU L, SONG J X, YIN X X, et al. Research progress on polymer solar cells based on PEDOT∶PSS electrodes[J]. Polymers, 2020, 12(1): 145. [49] HUSEYNOVA G, HYUN KIM Y, LEE J H, et al. Rising advancements in the application of PEDOT∶PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics[J]. Journal of Information Display, 2020, 21(2): 71-91. [50] WAN J Y, XIA Y G, FANG J F, et al. Solution-processed transparent conducting electrodes for flexible organic solar cells with 16.61% efficiency[J]. Nano-Micro Letters, 2021, 13(1): 44. [51] LEE S, HONG J Y, JANG J. A comparative study on optical, electrical, and mechanical properties of conducting polymer-based electrodes[J]. Small, 2015, 11(41): 5498-5504. [52] GUO Y F, ZHOU J Y, LIU Y J, et al. Chemical intercalation of topological insulator grid nanostructures for high-performance transparent electrodes[J]. Advanced Materials, 2017, 29(44): 1703424. [53] OH J M, NASIR M, RYU B, et al. Anomalous optoelectric properties of an ultrathin ruthenium film with a surface oxide layer for flexible transparent conducting electrodes[J]. Advanced Functional Materials, 2022, 32(14): 2109330. [54] BANZAI K, NAKA S, OKADA H. MoO3/Ag/MoO3anode for organic light-emitting diodes and its carrier injection property[J]. Japanese Journal of Applied Physics, 2015, 54(5): 054101. [55] XUE Z C, LIU X Y, ZHANG N, et al. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16403-16408. [56] XIA Y J, SUN K, OUYANG J Y. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices[J]. Advanced Materials, 2012, 24(18): 2436-2440. [57] JI Y X, YANG J, LUO W, et al. Ultraflexible and high-performance multilayer transparent electrode based on ZnO/Ag/CuSCN[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9571-9578. [58] JEONG H J, SONG Y H, KIM H W, et al. Highly conductive MXene/Ag nanowire/UV-resin/polycarbonate flexible transparent electrode for capacitive sensors[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2023. https://doi.org/10.1007/s10847-023-01203-3. [59] LIU J, BUCHHOLZ D B, HENNEK J W, et al. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics[J]. Journal of the American Chemical Society, 2010, 132(34): 11934-11942. [60] CHEN H D, TANG S, TIAN W H, et al. Direct sputtering on PDMS for investigation of stretchable and transparent microstrip line[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(9): 1741-1747. [61] PARK S, CHANG H Y, RAHIMI S, et al. Transparent nanoscale polyimide gate dielectric for highly flexible electronics[J]. Advanced Electronic Materials, 2018, 4(2): 1700043. [62] SERRANO I G, PANDA J, EDVINSSON T, et al. Flexible transparent graphene laminates via direct lamination of graphene onto polyethylene naphthalate substrates[J]. Nanoscale Advances, 2020, 2(8): 3156-3163. [63] LEE C Y, LIN M Y, WU W H, et al. Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations[J]. Semiconductor Science and Technology, 2010, 25(10): 105008. [64] ZHANG G Z, WU H, CHEN C, et al. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3[J]. Nanoscale Research Letters, 2015, 10(1): 76. [65] BAE S H, KAHYA O, SHARMA B K, et al. Graphene-P(VDF-TrFE) multilayer film for flexible applications[J]. ACS Nano, 2013, 7(4): 3130-3138. [66] KIM S J, SONG J M, LEE J S. Transparent organic thin-film transistors and nonvolatile memory devices fabricated on flexible plastic substrates[J]. Journal of Materials Chemistry, 2011, 21(38): 14516-14522. [67] LEE I Y, PARK H Y, PARK J H, et al. Poly-4-vinylphenol and poly(melamine-co-formaldehyde)-based graphene passivation method for flexible, wearable and transparent electronics[J]. Nanoscale, 2014, 6(7): 3830. [68] ZHANG F P, FUNAHASHI M, TAMAOKI N. Flexible field-effect transistors from a liquid crystalline semiconductor by solution processes[J]. Organic Electronics, 2010, 11(3): 363-368. [69] HONG J S, KWON H J, KIM N, et al. Solution-processed flexible gas barrier films for organic field-effect transistors[J]. Macromolecular Research, 2020, 28(8): 782-788. [70] ISHIKAWA F N, CHANG H K, RYU K, et al. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates[J]. ACS Nano, 2009, 3(1): 73-79. [71] GUO T, ZHANG G Z, SU X, et al. Transparent and flexible capacitors with an ultrathin structure by using graphene as bottom electrodes[J]. Nanomaterials, 2017, 7(12): 418. [72] KE S M, CHEN C, FU N Q, et al. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28406-28411. [73] TSAKONAS C, WAKEHAM S, CRANTON W M, et al. Transparent and flexible thin film electroluminescent devices using HiTUS deposition and laser processing fabrication[J]. IEEE Journal of the Electron Devices Society, 2016, 4(1): 22-29. [74] DAS S, GULOTTY R, SUMANT A V, et al. All two-dimensional, flexible, transparent, and thinnest thin film transistor[J]. Nano Letters, 2014, 14(5): 2861-2866. [75] JIN J, KO J H, YANG S, et al. Rollable transparent glass-fabric reinforced composite substrate for flexible devices[J]. Advanced Materials, 2010, 22(40): 4510-4515. [76] SUN Y L, CHEN D, LI Y, et al. High-performance green electronic substrate employing flexible and transparent cellulose films[J]. Carbohydrate Polymers, 2021, 270: 118359. [77] XU Y S, LIU T, LIU K L, et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors[J]. Nature Materials, 2023, 22: 1078-1084. [78] LI T R, TU T, SUN Y W, et al. A native oxide high-κ gate dielectric for two-dimensional electronics[J]. Nature Electronics, 2020, 3: 473-478. [79] PENG W, WANG L, QI G C, et al. Microstructure, dielectric and optical properties of transparent flexible high-κ Bi1.5MgNb1.5O7 thin films[J]. Ceramics International, 2024, 50(5): 8081-8090. [80] ZUO H T, GAN F, DONG J, et al. Highly transparent and colorless polyimide film with low dielectric constant by introducing meta-substituted structure and trifluoromethyl groups[J]. Chinese Journal of Polymer Science, 2021, 39(4): 455-464. [81] SU G P, LIANG Z H, ZHONG J Y, et al. Solution-processed, flexible, and highly transparent ZrO2∶PVP hybrid dielectric layer[J]. Organic Electronics, 2023, 116: 106759. [82] BIE Y Q, GROSSO G, HEUCK M, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits[J]. Nature Nanotechnology, 2017, 12: 1124-1129. [83] CUI X, LEE G H, KIM Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[J]. Nature Nanotechnology, 2015, 10: 534-540. [84] LEE G H, CUI X, KIM Y D, et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage[J]. ACS Nano, 2015, 9(7): 7019-7026. [85] LEE G H, YU Y J, CUI X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7(9): 7931-7936. [86] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6: 147-150. [87] YOON J, PARK W, BAE G Y, et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes[J]. Small, 2013, 9(19): 3295-3300. [88] PARK H, OH D S, LEE K J, et al. Flexible and transparent thin-film transistors based on two-dimensional materials for active-matrix display[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4749-4754. [89] KIM T Y, HA J, CHO K, et al. Transparent large-area MoS2 phototransistors with inkjet-printed components on flexible platforms[J]. ACS Nano, 2017, 11(10): 10273-10280. [90] DATHBUN A, KIM Y, CHOI Y, et al. Selectively metallized 2D materials for simple logic devices[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18571-18579. [91] LONG M S, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 2019, 29(19): 1803807. [92] AN J N, LE T S D, LIM C H J, et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics[J]. Advanced Science, 2018, 5(8): 1800496. [93] CHOI C, CHOI M K, LIU S Y, et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array[J]. Nature Communications, 2017, 8: 1664. [94] ROGALSKI A. Graphene-based materials in the infrared and terahertz detector families: a tutorial[J]. Advances in Optics and Photonics, 2019, 11(2): 314. [95] JARIWALA D, MARKS T J, HERSAM M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 2017, 16: 170-181. [96] ZHENG Z Q, ZHANG T M, YAO J, et al. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices[J]. Nanotechnology, 2016, 27(22): 225501. [97] ZHANG J C, HUANG Y C, TAN Z J, et al. Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors[J]. Advanced Materials, 2018, 30(36): 1803194. [98] WADSWORTH A, HAMID Z, KOSCO J, et al. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications[J]. Advanced Materials, 2020, 32(38): 2001763. [99] KUMAR G S, SARKAR P K, PRADHAN B, et al. Large-area transparent flexible guanidinium incorporated MAPbI3 microstructures for high-performance photodetectors with enhanced stability[J]. Nanoscale Horizons, 2020, 5(4): 696-704. [100] LI L D, YE S, QU J L, et al. Recent advances in perovskite photodetectors for image sensing[J]. Small, 2021, 17(18): 2005606. [101] XU R X, MIN L L, QI Z M, et al. Perovskite transparent conducting oxide for the design of a transparent, flexible, and self-powered perovskite photodetector[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16462-16468. [102] LI L D, LOU Z, SHEN G Z. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures[J]. Advanced Functional Materials, 2018, 28(6): 1705389. [103] HU C Q, CHEN H, LI L, et al. Ti3C2Tx MXene-RAN van der waals heterostructure-based flexible transparent NIR photodetector array for 1024 pixel image sensing application[J]. Advanced Materials Technologies, 2022, 7(7): 202101639. [104] TKACHEV S, MONTEIRO M, SANTOS J, et al. Environmentally friendly graphene inks for touch screen sensors[J]. Advanced Functional Materials, 2021, 31(33): 2103287. [105] LUAN H X, ZHANG D Z, XU Z Y, et al. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors[J]. Journal of Materials Chemistry C, 2022, 10(19): 7604-7613. [106] FENG Q C, WAN K N, ZHU T Y, et al. Stretchable, environment-stable, and knittable ionic conducting fibers based on metallogels for wearable wide-range and durable strain sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4542-4551. [107] SHANG K D, YANG T T, GUO C F, et al. Interfacial enhanced 1D-2D composite toward mechanically robust strain sensors[J]. Advanced Materials Interfaces, 2022, 9(30): 2201201. [108] LIANG J, SHENG H W, MA H Y, et al. Transparent electronic skin from the integration of strain sensors and supercapacitors[J]. Advanced Materials Technologies, 2023, 8(4): 202201234. [109] PYO S, CHOI J, KIM J. A fully transparent, flexible, sensitive, and visible-blind ultraviolet sensor based on carbon nanotube-graphene hybrid[J]. Advanced Electronic Materials, 2019, 5(2): 1800737. [110] ZHANG C F, NICOLOSI V. Graphene and MXene-based transparent conductive electrodes and supercapacitors[J]. Energy Storage Materials, 2019, 16: 102-125. [111] LI N, YANG G Z, SUN Y, et al. Free-standing and transparent graphene membrane of polyhedron box-shaped basic building units directly grown using a NaCl template for flexible transparent and stretchable solid-state supercapacitors[J]. Nano Letters, 2015, 15(5): 3195-3203. [112] YAN J, WANG Q, WEI T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): 201300816. [113] JANG H, PARK Y J, CHEN X, et al. Graphene-based flexible and stretchable electronics[J]. Advanced Materials, 2016, 28(22): 4184-4202. [114] ZHU J Y, CHILDRESS A S, KARAKAYA M, et al. Defect-engineered graphene for high-energy- and high-power-density supercapacitor devices[J]. Advanced Materials, 2016, 28(33): 7185-7192. [115] SIAL Q A, JAVED M S, LEE Y J, et al. Flexible and transparent graphene-based supercapacitors decorated with nanohybrid of tungsten oxide nanoflakes and nitrogen-doped-graphene quantum dots[J]. Ceramics International, 2020, 46(14): 23145-23154. [116] RAMAN V, RHEE D, SELVARAJ A R, et al. High-performance flexible transparent micro-supercapacitors from nanocomposite electrodes encapsulated with solution processed MoS2 nanosheets[J]. Science and Technology of Advanced Materials, 2021, 22(1): 875-884. |
[1] | 刘京明, 杨俊, 赵有文, 杨成奥, 蒋洞微, 牛智川. GaSb单晶研究进展[J]. 人工晶体学报, 2024, 53(1): 1-11. |
[2] | 黄田, 马赛, 刘宵宇, 黎迎, 武红, 徐永兵, 魏陆军, 李峰, 普勇. 具有大磁各向异性和高居里温度的二维笼目磁性材料Fe3As[J]. 人工晶体学报, 2023, 52(8): 1413-1421. |
[3] | 张万贺, 胡建英, 周涛, 吕怡婷, 王克良. 镁和铝离子电池负极材料Nb2N的第一性原理研究[J]. 人工晶体学报, 2023, 52(8): 1451-1457. |
[4] | 王高凯, 张兴旺. 六方氮化硼外延生长研究进展[J]. 人工晶体学报, 2023, 52(5): 825-841. |
[5] | 白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉. 多晶金刚石衬底范德瓦耳斯外延GaN薄膜[J]. 人工晶体学报, 2023, 52(5): 901-908. |
[6] | 格畅, 周国香, 秦旭晨, 王广, 阎童童, 李佳. 二维Janus型铬硫化物电子和压电性质研究[J]. 人工晶体学报, 2023, 52(4): 613-620. |
[7] | 张俊峰, 孙再征, 孔腾飞, 蔡根旺, 李亚平, 胡莎, 樊志琴. 射频磁控溅射法制备MoS2薄膜的最佳工艺参数研究[J]. 人工晶体学报, 2023, 52(2): 271-280. |
[8] | 王栋, 魏子健, 张倩, 夏月庆, 张秀丽, 王天汉, 袁志华, 兰明明. 化学气相沉积法制备二维过渡金属硫族化合物研究进展[J]. 人工晶体学报, 2023, 52(1): 156-169. |
[9] | 赵清华, 郑丹, 陈鹏, 王涛, 介万奇. 硒化铟材料的发展及其光电器件应用[J]. 人工晶体学报, 2022, 51(9-10): 1703-1721. |
[10] | 崔玉青, 唐军利, 张晓. Ar气保护固相合成花状二硫化钼工艺研究[J]. 人工晶体学报, 2022, 51(8): 1445-1450. |
[11] | 刘涵, 高蕾, 薛宇飞, 叶宇娇, 曾春华. 新型二维铜族硫族化合物的研究进展[J]. 人工晶体学报, 2022, 51(8): 1493-1510. |
[12] | 张斌, 胡前库, 李丹丹, 王李波, 周爱国. 熔盐法制备三元层状MAX相陶瓷的研究进展[J]. 人工晶体学报, 2022, 51(6): 1132-1140. |
[13] | 齐越, 王俊强, 朱泽华, 武晨阳, 李孟委. 石墨烯及石墨烯/氮化硼的电子结构特性研究[J]. 人工晶体学报, 2022, 51(4): 620-627. |
[14] | 庞国旺, 刘晨曦, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能, 汤哲. 非金属元素(F, S, Se, Te)掺杂对ZnO/graphene肖特基界面电荷及肖特基调控的理论研究[J]. 人工晶体学报, 2022, 51(4): 628-636. |
[15] | 袁文宾, 钟敏. 气相输运沉积制备c轴择优取向的碘化铋薄膜[J]. 人工晶体学报, 2022, 51(4): 637-642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||