[1] XIAN M H, FARES C, REN F, et al. Asymmetrical contact geometry to reduce forward-bias degradation in β-Ga2O3 rectifiers[J]. ECS Journal of Solid State Science and Technology, 2020, 9(3): 035007. [2] JIN S Q, WANG X, WANG X L, et al. Effect of phase junction structure on the photocatalytic performance in overall water splitting: Ga2O3 photocatalyst as an example[J]. The Journal of Physical Chemistry C, 2015, 119(32): 18221-18228. [3] CHEN X, LIU K W, ZHANG Z Z, et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 4185-4191. [4] CUI S J, MEI Z X, ZHANG Y H, et al. Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates[J]. Advanced Optical Materials, 2017, 5(19): 1700454. [5] DEY S, DHAL G C. Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: an overview[J]. Materials Science for Energy Technologies, 2019, 2(3): 575-588. [6] MAHAJAN H, GODARA S K, SRIVASTAVA A K. Synthesis and investigation of structural, morphological, and magnetic properties of the manganese doped cobalt-zinc spinel ferrite[J]. Journal of Alloys and Compounds, 2022, 896: 162966. [7] IL′IN A, IVANOVA A, KOZLOVSKAYA K, et al. Electric and photoelectric properties of complex zinc and cobalt oxides with spinel structure[C]//14th International Conference “Interaction of Radiation with Solids”, September 21-24, 2021, Minsk, Belarus. [8] ANEESH P, JAYARAJ M. Growth and characterization of nanostructured wide band gap semiconductors for optoelectronic applications[D]. Cochin University of Science & Technology, 2010. [9] TSAI S H, SHEN Y C, HUANG C Y, et al. Deep-ultraviolet Schottky photodetectors with high deep-ultraviolet/visible rejection based on a ZnGa2O4 thin film[J]. Applied Surface Science, 2019, 496: 143670. [10] SINGH A V, KHODADADI B, MOHAMMADI J B, et al. Bulk single crystal-like structural and magnetic characteristics of epitaxial spinel ferrite thin films with elimination of antiphase boundaries[J]. Advanced Materials, 2017, 29(30): 1701222. [11] DA SILVA M N, DE CARVALHO J M, DE ABREU FANTINI M C, et al. Nanosized ZnGa2O4∶Cr3+ spinels as highly luminescent materials for bioimaging[J]. ACS Applied Nano Materials, 2019, 2(11): 6918-6927. [12] JIN M H, LI F, XIAHOU J Q, et al. A new persistent luminescence phosphor of ZnGa2O4∶Ni2+ for the second near-infrared transparency window[J]. Journal of Alloys and Compounds, 2023, 931: 167491. [13] LIU X Q, CHEN L, HUO X W, et al. From two-step excitation to persistent luminescence: revisiting ZnGa2O4∶Cr3+ phosphor through upconversion charging approach[J]. Advanced Optical Materials, 2024: 2303018. [14] CHI Z, TARNTAIR F G, FRÉGNAUX M, et al. Bipolar self-doping in ultra-wide bandgap spinel ZnGa2O4[J]. Materials Today Physics, 2021, 20: 100466. [15] MONROY E, OMN S F, CALLE F. Wide-bandgap semiconductor ultraviolet photodetectors[J]. Semiconductor Science and Technology, 2003, 18(4): R33-R51. [16] YANG J L, LIU K W, SHEN D Z. Recent progress of ZnMgO ultraviolet photodetector[J]. Chinese Physics B, 2017, 26(4): 047308. [17] PEARTON S J, YANG J C, CARY P H IV, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [18] CHEN M I, SINGH A K, CHIANG J L, et al. Zinc gallium oxide-a review from synthesis to applications[J]. Nanomaterials, 2020, 10(11): 2208. [19] ZHANG L, JI G F, ZHAO F, et al. First-principles study of the structural, mechanical and electronic properties of ZnX2O4(X=Al, Cr and Ga)[J]. Chinese Physics B, 2011, 20(4): 047102. [20] BRIK M G. First-principles calculations of electronic, optical and elastic properties of ZnAl2S4 and ZnGa2O4[J]. Journal of Physics and Chemistry of Solids, 2010, 71(10): 1435-1442. [21] DIXIT H, TANDON N, COTTENIER S, et al. Electronic structure and band gap of zinc spinel oxides beyond LDA∶ZnAl2O4, ZnGa2O4 and ZnIn2O4[J]. New Journal of Physics, 2011, 13(6): 063002. [22] SANTIA M D, LOOK D C, BADESCU S C. Electron-phonon coupling and electron mobility in degenerately doped oxides from first-principles[J]. Optical Engineering, 2020, 59: 067103. [23] SAMPATH S K, KANHERE D G, PANDEY R. Electronic structure of spinel oxides: zinc aluminate and zinc gallate[J]. Journal of Physics Condensed Matter, 1999, 11(18): 3635-3644. [24] WANG B, WANG H, TU B T, et al. Optical transmission, dispersion, and transition behavior of ZnGa2O4 transparent ceramic[J]. Journal of the American Ceramic Society, 2023, 106(2): 1230-1239. [25] GALAZKA Z, GANSCHOW S, SCHEWSKI R, et al. Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals[J]. APL Materials, 2019, 7(2): 022512. [26] LUO S J, HARRINGTON G F, WU K T, et al. Heteroepitaxial (111) ZnGa2O4 thin films grown on (001) sapphire by pulsed laser deposition[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2020, 14(9): 2000270. [27] WANG L, ZHANG W R, LIU N T, et al. Epitaxial growth and stoichiometry control of ultrawide bandgap ZnGa2O4 films by pulsed laser deposition[J]. Coatings, 2021, 11(7): 782. [28] 姜雁博. ZnGa2O4电子结构模拟及其光催化和光学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. JIANG Y B. Simulation of electronic structure and research on photocatalytic and optical properties of zinc gallium oxide[D].Harbin: Harbin Institute of Technology, 2020 (in Chinese). [29] NISHIWAKI M, FUJIWARA H. Highly accurate prediction of material optical properties based on density functional theory[J]. Computational Materials Science, 2020, 172: 109315. [30] CHASE A B, OSMER J A. Localized cooling in flux crystal growth[J]. Journal of the American Ceramic Society, 1967, 50(6): 325-328. [31] VAN DER STRATEN P J M, METSELAAR R, JONKER H D. Flux growth of ZnGa2O4 single crystals[J]. Journal of Crystal Growth, 1978, 43(2): 270-272. [32] YAN Z, TAKEI H. Flux growth of single crystals of spinel ZnGa2O4 and CdGa2O4[J]. Journal of Crystal Growth, 1997, 171(1/2): 131-135. [33] YAN Z, TAKEI H, KAWAZOE H. Electrical conductivity in transparent ZnGa2O4: reduction and surface-layer structure transformation[J]. Journal of the American Ceramic Society, 1998, 81(1): 180-186. [34] LIU J Y, LI Z Y, HAO W B, et al. Pt/ZnGa2O4 Schottky barrier diodes fabricated by using single crystal n-ZnGa2O4 (111) substrates[J]. IEEE Electron Device Letters, 2022, 43(12): 2061-2064. [35] HORNG R H, HUANG C Y, OU S L, et al. Epitaxial growth of ZnGa2O4: a new, deep ultraviolet semiconductor candidate[J]. Crystal Growth & Design, 2017, 17(11): 6071-6078. [36] TSAI S H, BASU S, HUANG C Y, et al. Deep-ultraviolet photodetectors based on epitaxial ZnGa2O4 thin films[J]. Scientific Reports, 2018, 8: 14056. [37] CHIKOIDZE E, SARTEL C, MADACI I, et al. P-type ultrawide-band-gap spinel ZnGa2O4: new perspectives for energy electronics[J]. Crystal Growth & Design, 2020, 20(4): 2535-2546. [38] HAN D Y, LIU K W, HOU Q C, et al. Self-powered solar-blind ZnGa2O4 UV photodetector with ultra-fast response speed[J]. Sensors and Actuators A: Physical, 2020, 315: 112354. [39] SOONMIN H O. A review of nanostructured thin films for gas sensing and corrosion protection[J]. Mediterranean Journal of Chemistry, 2018, 7(6): 433-451. [40] JANG Y, HONG S, SEO J, et al. Thin film transistors based on ultra-wide bandgap spinel ZnGa2O4[J]. Applied Physics Letters, 2020, 116(20): 202104. [41] GUO A Q, ZHANG L C, CAO N, et al. Pulsed laser deposition of ZnGa2O4 thin films on Al2O3 and Si substrates for deep optoelectronic devices applications[J]. Applied Physics Express, 2023, 16(2): 021004. [42] TIWARI A. Handbook of antimicrobial coatings[M]. Amsterdam: Elsevier, 2017: 321-355. [43] 聂 霞, 冒守栋, 晏敏胜, 等. 磁控溅射Al-Ti合金薄膜的结构与性能变化[J]. 中国表面工程, 2014, 27(4): 95-99. NIE X, MAO S D, YAN M S, et al. Structure and properties variation of Al-Ti alloy coatings prepared by magnetron sputtering[J]. China Surface Engineering, 2014, 27(4): 95-99 (in Chinese). [44] HONG Y E, KIM Y S, DO K, et al. Thermal stability of Al- and Zr-doped HfO2 thin films grown by direct current magnetron sputtering[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005, 23(5): 1413-1418. [45] WANG, XU, HUANG, et al. Structural characteristics and photoluminescence properties of sputter-deposition ZnGa2O4 thin films on sapphire and Si(100) substrates[J]. Coatings, 2019, 9(8): 469. [46] XIE C, LU X T, TONG X W, et al. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors[J]. Advanced Functional Materials, 2019, 29(9): 1806006. [47] 韩冬阳. ZnGa2O4基日盲紫外光电探测器的研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022. HAN D Y. The study of ZnGa2O4 based solar-blind ultraviolet photodetectors[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022(in Chinese). [48] ZHAO B, WANG F, CHEN H Y, et al. An ultrahigh responsivity (9.7 mA·W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures[J]. Advanced Functional Materials, 2017, 27(17): 1700264. [49] WANG Y F, LI L, WANG H B, et al. An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga2O3/polyaniline heterojunction[J]. Nanoscale, 2020, 12(3): 1406-1413. [50] CHANG S P, HUANG W L, HUANG L W, et al. Tri-layer structure ZnGa2O4-based resistive random access memory[J]. ECS Journal of Solid State Science and Technology, 2021, 10(6): 065003. [51] 杨 奔. 基于宽禁带半导体ZnGa2O4薄膜的忆阻器及物理瞬态研究[D]. 重庆: 重庆大学, 2022. YANG B. Research on memristor and physically transient based on wide-bandgap semiconductor ZnGa2O4 thin films[D].Chongqing: Chongqing University, 2022 (in Chinese). [52] SHRESTHA S, FISCHER R, MATT G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers[J]. Nature Photonics, 2017, 11: 436-440. [53] ROUXEL J R, KOWALEWSKI M, BENNETT K, et al. X-ray sum frequency diffraction for direct imaging of ultrafast electron dynamics[J]. Physical Review Letters, 2018, 120(24): 243902. [54] ZHANG Z P, CHEN Z M, CHEN M N, et al. ε-Ga2O3 thin film avalanche low-energy X-ray detectors for highly sensitive detection and fast-response applications[J]. Advanced Materials Technologies, 2021, 6(4): 2001094. [55] CHEN J W, TANG H L, LIU B, et al. High-performance X-ray detector based on single-crystal β-Ga2O3∶Mg[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2879-2886. [56] AHMAD KHAN J, MAITHANI Y, HORNG R H, et al. Investigating mechanical properties of sintered ZnGa2O4 ceramics using nanoindentation[J]. Ceramics International, 2022, 48(18): 27064-27075. [57] RANA S, CHIU S J, HUANG C Y, et al. Direct hard X-ray photodetector with superior sensitivity based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition[J]. Materials Today Advances, 2023, 19: 100411. [58] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018, 187/188: 66-77. [59] ROCCAFORTE F, GIANNAZZO F, GRECO G. Ion implantation doping in silicon carbide and gallium nitride electronic devices[J]. Micro, 2022, 2(1): 23-53. [60] SINGH A K, YEN C C, HUANG S M, et al. Growth and performance enhancement of sputtered ZnGa2O4 MOSFETs on sapphire substrates[J]. ACS Applied Electronic Materials, 2024, 6(2): 1356-1364. |