人工晶体学报 ›› 2024, Vol. 53 ›› Issue (8): 1302-1312.
牛丽丽, 王培, 刘彦彬, 赵惠娟
收稿日期:
2024-04-18
出版日期:
2024-08-15
发布日期:
2024-08-14
作者简介:
牛丽丽(1984—),女,河北省人,讲师。E-mail:lily13131020008@qq.com
基金资助:
NIU Lili, WANG Pei, LIU Yanbin, ZHAO Huijuan
Received:
2024-04-18
Online:
2024-08-15
Published:
2024-08-14
摘要: 生物质衍生碳材料具有前驱体来源广泛、比表面积大、杂原子掺杂丰富、碳纳米尺寸可控等优良特点,作为超级电容器电极材料具有广阔的应用前景。且因其在缓解环境问题、提升废物利用率和促进可持续储能应用方面作用巨大而受到人们越来越多的关注。本文综述了超级电容器用生物质衍生碳材料研究进展,包括生物质衍生碳前驱体的主要来源、制备策略及生物质碳纳米结构。阐述了不同制备策略(碳化方法、活化方法及杂原子掺杂)中生物质碳的孔结构、比表面积和电化学性能,介绍了纳米尺寸碳材料对其性能的影响,最后总结了生物质碳在超级电容器领域的发展前景和面临的挑战,为生物质碳的未来发展和高效利用提供有益的启示。
中图分类号:
牛丽丽, 王培, 刘彦彬, 赵惠娟. 超级电容器用生物质衍生碳材料研究进展[J]. 人工晶体学报, 2024, 53(8): 1302-1312.
NIU Lili, WANG Pei, LIU Yanbin, ZHAO Huijuan. Recent Advances in Biomass-Derived Carbon Materials for Supercapacitors[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1302-1312.
[1] PENG M K, WANG L, LI L B, et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors[J]. eScience, 2021, 1(1): 83-90. [2] ZHAO Y, HUANG C, HE Y H, et al. High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron[J]. Journal of Power Sources, 2020, 456: 228023. [3] LI B, DAI F, XIAO Q F, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science, 2016, 9(1): 102-106. [4] KE Q Q, WANG J. Graphene-based materials for supercapacitor electrodes—a review[J]. Journal of Materiomics, 2016, 2(1): 37-54. [5] CAO Y H, WANG X M, GU Z R, et al. Potassium chloride templated carbon preparation for supercapacitor[J]. Journal of Power Sources, 2018, 384: 360-366. [6] ZHUO H, HU Y J, CHEN Z H, et al. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor[J]. Carbohydrate Polymers, 2019, 215: 322-329. [7] YANG Z F, TIAN J R, YIN Z F, et al. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review[J]. Carbon, 2019, 141: 467-480. [8] LIU B, ZHOU X H, CHEN H B, et al. Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance[J]. Electrochimica Acta, 2016, 208: 55-63. [9] THIRUMAL V, YUVAKKUMAR R, RAVI G, et al. Characterization of activated biomass carbon from tea leaf for supercapacitor applications[J]. Chemosphere, 2022, 291(2): 132931. [10] RAWAT S, MISHRA R K, BHASKAR T. Biomass derived functional carbon materials for supercapacitor applications[J]. Chemosphere, 2022, 286(3): 131961. [11] ZHAO Y, CHEN P, TAO S, et al. Nitrogen/oxygen co-doped carbon nanofoam derived from bamboo fungi for high-performance supercapacitors[J]. Journal of Power Sources. 2020, 479: 228835. [12] REN B, LI C Z, ZHANG L Y, et al. High capacitance for asymmetric supercapacitors based on one-step synthetic nanoflowers/nanocones arrays as cathode and pomelo peel as anode[J]. Journal of Solid State Chemistry, 2021, 302: 122428. [13] RAWAT S, BOOBALAN T, SATHISH M, et al. Utilization of CO2 activated litchi seed biochar for the fabrication of supercapacitor electrodes[J]. Biomass and Bioenergy, 2023, 171: 106747. [14] CHEN B L, WU D L, WANG T, et al. Rapid preparation of porous carbon by flame burning carbonization method for supercapacitor[J]. Chemical Engineering Journal, 2023, 462: 142163. [15] QIN L Y, WU Y, JIANG E C. In situ template preparation of porous carbon materials that are derived from swine manure and have ordered hierarchical nanopore structures for energy storage[J]. Energy, 2022, 242: 123040. [16] TIAN Y H, REN Q X, CHEN X Y, et al. Yeast-based porous carbon with superior electrochemical properties[J]. ACS Omega, 2021, 7(1): 654-660. [17] SUN Y, LI S Q, YANG X R, et al. Bacteria-assisted synthesis of Fe-Co-Ni-S/hollow carbon spheres as high-performance supercapacitor electrode materials[J]. ChemistrySelect, 2023, 8(1): e202203439. [18] REN M, JIA Z Y, TIAN Z W, et al. High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications[J]. ChemElectroChem, 2018, 5(18): 2686-2693. [19] PHIRI J, DOU J Z, VUORINEN T, et al. Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes[J]. ACS Omega, 2019, 4(19): 18108-18117. [20] JEREZ F, RAMOS P B, CÓRDOBA V E, et al. Yerba mate: from waste to activated carbon for supercapacitors[J]. Journal of Environmental Management, 2023, 330: 117158. [21] NIU L Y, SHEN C, YAN L J, et al. Waste bones derived nitrogen-doped carbon with high micropore ratio towards supercapacitor applications[J]. Journal of Colloid and Interface Science, 2019, 547: 92-101. [22] HUANG S Q, DING Y, LI Y C, et al. Nitrogen and sulfur Co-doped hierarchical porous biochar derived from the pyrolysis of mantis shrimp shell for supercapacitor electrodes[J]. Energy & Fuels, 2021, 35(2): 1557-1566. [23] HU M, XU J, CHENG R, et al. Making waste profitable: yak dung derived carbon for high-performance supercapacitors[J]. Nano, 2021, 16(8): 2150087. [24] DAI C C, WAN J F, SHAO J Q, et al. Hollow activated carbon with unique through-pore structure derived from reed straw for high-performance supercapacitors[J]. Materials Letters, 2017, 193: 279-282. [25] SELVARAJ A R, MUTHUSAMY A, INHO-CHO, et al. Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors[J]. Carbon, 2021, 174: 463-474. [26] KRYSANOVA K, KRYLOVA A, ZAICHENKO V. Properties of biochar obtained by hydrothermal carbonization and torrefaction of peat[J]. Fuel, 2019, 256: 115929. [27] HEIDARI M, DUTTA A, ACHARYA B, et al. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion[J]. Journal of the Energy Institute, 2019, 92(6): 1779-1799. [28] TANG D Y, LUO Y Y, LEI W D, et al. Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications[J]. Applied Surface Science, 2018, 462: 862-871. [29] LI Z J, LIU Q, SUN L Z, et al. Hydrothermal synthesis of 3D hierarchical ordered porous carbon from yam biowastes for enhanced supercapacitor performance[J]. Chemical Engineering Science, 2022, 252: 117514. [30] RUSTAMAJI H, PRAKOSO T, DEVIANTO H, et al. Urea nitrogenated mesoporous activated carbon derived from oil palm empty fruit bunch for high-performance supercapacitor[J]. Journal of Energy Storage, 2022, 52: 104724. [31] LI Z J, GUO D F, LIU Y Y, et al. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors[J]. Chemical Engineering Journal, 2020, 397: 125418. [32] LIANG J Y, QU T T, KUN X, et al. Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance[J]. Applied Surface Science, 2018, 436: 934-940. [33] LI B Q, CHENG Y F, DONG L P, et al. Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors[J]. Carbon, 2017, 122: 592-603. [34] LI Q, MU J H, ZHOU J, et al. Avoiding the use of corrosive activator to produce nitrogen-doped hierarchical porous carbon materials for high-performance supercapacitor electrode[J]. Journal of Electroanalytical Chemistry, 2019, 832: 284-292. [35] KALINKE C, DE OLIVEIRA P R, BONACIN J A, et al. State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical applications[J]. Green Chemistry, 2021, 23(15): 5272-5301. [36] LI Y, YANG W, YANG W, et al. Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry[J]. Nano-Micro Letters, 2021, 13(1): 95. [37] DING Y X, QI J, HOU R L, et al. Preparation of high-performance hierarchical porous activated carbon via a multistep physical activation method for supercapacitors[J]. Energy & Fuels, 2022, 36(10): 5456-5464. [38] CHENG J, HU S C, SUN G T, et al. Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application[J]. Energy, 2021, 215(1): 119144. [39] XIE K H, ZHANG W, REN K, et al. Electrochemical performance of corn waste derived carbon electrodes based on the intrinsic biomass properties[J]. Materials, 2023, 16(14): 5022. [40] YANG V, ARUMUGAM SENTHIL R, PAN J Q, et al. Hierarchical porous carbon derived from jujube fruits as sustainable and ultrahigh capacitance material for advanced supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 579: 347-356. [41] YANG Y X, SUN C, LIN B C, et al. Surface modified and activated waste bone char for rapid and efficient VOCs adsorption[J]. Chemosphere, 2020, 256: 127054. [42] JIA B, MIAN Q H, WU D L, et al. Heteroatoms self-doped porous carbon from cottonseed meal using K2CO3 as activator and DES electrolyte for supercapacitor with high energy density[J]. Materials Today Chemistry, 2022, 24: 100828. [43] WANG C S, LIU T Z. Nori-based N, O, S, Cl Co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor[J]. Journal of Alloys and Compounds, 2017, 696: 42-50. [44] HOU L R, CHEN Z Y, ZHAO Z W, et al. Universal FeCl3-activating strategy for green and scalable fabrication of sustainable biomass-derived hierarchical porous nitrogen-doped carbons for electrochemical supercapacitors[J]. ACS Applied Energy Materials, 2019, 2(1): 548-557. [45] HOU L J, HU Z A, WANG X T, et al. Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 540: 88-96. [46] VEEMAN S, KARUPPUCHAMY S. H2O2 assisted hydrothermal and microwave synthesis of CuO-NiO hybrid MWCNT composite electrode materials for supercapacitor applications[J]. Ceramics International, 2022, 48(18): 26806-26817. [47] ZHONG R Q, ZHANG H X, ZHANG Y L, et al. KMnO4-assisted synthesis of hierarchical porous carbon with ultrahigh capacitance for supercapacitor[J]. Journal of Energy Storage, 2022, 51: 104346. [48] JIANG L L, SHENG L Z, CHEN X, et al. Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(29): 11388-11396. [49] GONG Y N, LI D L, LUO C Z, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry, 2017, 19(17): 4132-4140. [50] WAN L, WEI W, XIE M J, et al. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode[J]. Electrochimica Acta, 2019, 311: 72-82. [51] HU S C, CHENG J, WANG W P, et al. Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications[J]. Renewable Energy, 2021, 177: 82-94. [52] TAN Y T, XU Z X, HE L J, et al. Three-dimensional high graphitic porous biomass carbon from dandelion flower activated by K2FeO4 for supercapacitor electrode[J]. Journal of Energy Storage, 2022, 52: 104889. [53] KHAN A, SENTHIL, PAN J Q, et al. Hierarchically porous biomass carbon derived from natural withered rose flowers as high-performance material for advanced supercapacitors[J]. Batteries & Supercaps, 2020, 3(8): 731-737. [54] WANG S H, WU Y T, ZHANG X Y, et al. Hierarchical porous carbon fabricated by NaCl-activated Artemisia argyi rod as electrode material for high-performance supercapacitor[J]. Ionics, 2022, 28(6): 2991-3000. [55] TIAN H D, FANG Q Q, CHENG R R, et al. Molten salt template-assisted synthesis of N, S-codoped hierarchically porous carbon nanosheets for efficient energy storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614: 126172. [56] ZHENG N, ZHANG X, ZHANG C, et al. Dynamic salt capsulated synthesis of carbon materials in air[J]. Matter, 2022, 5(5): 1603-1615. [57] GUO Z X, HAN X S, ZHANG C M, et al. Activation of biomass-derived porous carbon for supercapacitors: a review[J]. Chinese Chemical Letters, 2023, 35(7): 109007. [58] 张 伟, 程荣荣, 毕宏晖, 等. 模板法制备超级电容器用多孔炭的研究进展[J]. 新型炭材料, 2021, 36(1): 69-81. ZHANG W, CHENG R R, BI H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials, 2021, 36(1): 69-81 (in Chinese). [59] FENG T, WANG S R, HUA Y N, et al. Synthesis of biomass-derived N, O-codoped hierarchical porous carbon with large surface area for high-performance supercapacitor[J]. Journal of Energy Storage, 2021, 44: 103286. [60] LI K, LIU Z, MA X M, et al. A combination of heteroatom doping engineering assisted by molten salt and KOH activation to obtain N and O co-doped biomass porous carbon for high performance supercapacitors[J]. Journal of Alloys and Compounds, 2023, 960: 170785. [61] JIAO S H, YAO Y T, ZHANG J L, et al. Nano-flower-like porous carbon derived from soybean straw for efficient N-S Co-doped supercapacitors by coupling in situ heteroatom doping with green activation method[J]. Applied Surface Science, 2023, 615: 156365. [62] LIU C L, YUAN R L, YUAN Y X, et al. An environment-friendly strategy to prepare oxygen-nitrogen-sulfur doped mesopore-dominant porous carbons for symmetric supercapacitors[J]. Fuel, 2023, 344: 128039. [63] LUO L, LUO L C, DENG J P, et al. High performance supercapacitor electrodes based on B/N co-doped biomass porous carbon materials by KOH activation and hydrothermal treatment[J]. International Journal of Hydrogen Energy, 2021, 46(63): 31927-31937. [64] WANG L L, LI X J, HUANG X, et al. Activated green resources to synthesize N, P co-doped O-rich hierarchical interconnected porous carbon for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2022, 891: 161908. [65] YUE X D, YANG H X, AN P, et al. Multi-element co-doped biomass porous carbon with uniform cellular pores as a supercapacitor electrode material to realise high value-added utilisation of agricultural waste[J]. Dalton Transactions, 2022, 51(32): 12125-12136. [66] GOPALAKRISHNAN A, BADHULIKA S. From onion skin waste to multi-heteroatom self-doped highly wrinkled porous carbon nanosheets for high-performance supercapacitor device[J]. Journal of Energy Storage, 2021, 38: 102533. [67] YU J H, LI X, CUI Z X, et al. Tailoring in situ N, O, P, S-doped soybean-derived porous carbon with ultrahigh capacitance in both acidic and alkaline media[J]. Renewable Energy, 2021, 163: 375-385. [68] KUMAR S, SAEED G, ZHU L, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review[J]. Chemical Engineering Journal, 2021, 403: 126352. [69] YAN Z X, GAO Z H, ZHANG Z Y, et al. Graphene nanosphere as advanced electrode material to promote high performance symmetrical supercapacitor[J]. Small, 2021, 17(18): e2007915. [70] GUO Y, HUANG H, ZHAO Y P, et al. Collaboratively intercalated 1D/3D carbon nanoarchitectures in rGO-based aerogel for supercapacitor electrodes with superior capacitance retention[J]. Applied Surface Science, 2022, 596: 153566. [71] CAO Y F, XIE L J, SUN G H, et al. Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance[J]. Sustainable Energy & Fuels, 2018, 2(2): 455-465. [72] LI C, ZHENG C, CAO F, et al. The development trend of graphene derivatives[J]. Journal of Electronic Materials, 2022, 51(8): 4107-4114. [73] SHANG T X, XU Y, LI P, et al. A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors[J]. Nano Energy, 2020, 70: 104531. [74] GUO S, LI J, ZHANG L, et al. Preparation of high-porosity biomass-based carbon electrodes by selective laser sintering[J]. Materials Letters, 2023, 330: 133300. |
[1] | 张丹丹, 田满泽, 鄢波, 任俊鹏, 周进康. 镍掺杂聚苯胺/生物质炭复合材料的电化学性能[J]. 人工晶体学报, 2024, 53(7): 1280-1287. |
[2] | 谢贵久, 张文斌, 王岩, 宋振, 张兵. 碳化硅晶片减薄工艺对表面损伤的影响[J]. 人工晶体学报, 2024, 53(6): 967-972. |
[3] | 顾鹏, 雷沛, 叶帅, 胡晋, 吴戈. 顶部籽晶溶液法生长碳化硅单晶及其关键问题研究进展[J]. 人工晶体学报, 2024, 53(5): 741-759. |
[4] | 程佳辉, 杨磊, 王劲楠, 龚春生, 张泽盛, 简基康. 重掺杂P型SiC的熔融KOH刻蚀行为研究[J]. 人工晶体学报, 2024, 53(5): 773-780. |
[5] | 邢佳斌, 李威, 贾松岩, 马亚丽, 李雪, 郑强. 低温碳化法制备高分散性纳米碳酸钙的研究[J]. 人工晶体学报, 2024, 53(5): 864-872. |
[6] | 孙兴汉, 李纪虎, 张伟, 曾群锋, 张俊锋. 碳化硅化学机械抛光中材料去除非均匀性研究进展[J]. 人工晶体学报, 2024, 53(4): 585-599. |
[7] | 陈哲明, 丁雨憧, 邹少红, 龙勇, 石自彬, 马晋毅. 硅基钽酸锂异质晶圆键合工艺研究[J]. 人工晶体学报, 2024, 53(4): 634-640. |
[8] | 王晨星, 刘禹松, 胡泳池, 胡家俊, 赵钰淳, 宋旭辉, 宋衍滟. 碳化温度对CF/Pd催化剂电催化氧化甲醇性能的影响[J]. 人工晶体学报, 2024, 53(4): 721-729. |
[9] | 鲁雪松, 王万堂, 王蓉, 杨德仁, 皮孝东. 半导体碳化硅衬底的湿法氧化[J]. 人工晶体学报, 2024, 53(2): 181-193. |
[10] | 郭钰, 刘春俊, 张新河, 沈鹏远, 张博, 娄艳芳, 彭同华, 杨建. 碳化硅同质外延质量影响因素的分析与综述[J]. 人工晶体学报, 2024, 53(2): 210-217. |
[11] | 韩景瑞, 李锡光, 李咏梅, 王垚浩, 张清纯, 李达, 施建新, 闫鸿磊, 韩跃斌, 丁雄杰. 8英寸SiC晶圆制备与外延应用[J]. 人工晶体学报, 2024, 53(10): 1712-1719. |
[12] | 隋占仁, 徐凌波, 崔灿, 王蓉, 杨德仁, 皮孝东, 韩学峰. 数值模拟顶部籽晶溶液生长法制备单晶碳化硅的研究进展[J]. 人工晶体学报, 2023, 52(6): 1067-1085. |
[13] | 孙帅, 宋华平, 杨军伟, 王文军, 屈红霞, 简基康. 利用干燥空气改善熔融KOH对单晶碳化硅的腐蚀[J]. 人工晶体学报, 2023, 52(5): 753-758. |
[14] | 韩跃斌, 蒲勇, 施建新, 闫鸿磊. 高速旋转垂直热壁CVD外延生长n型4H-SiC膜的研究[J]. 人工晶体学报, 2023, 52(5): 918-924. |
[15] | 张蕊, 王幼琪, 沈培智. 用于超级电容器的二硫化钼纳米片制备及电化学性能研究[J]. 人工晶体学报, 2023, 52(4): 663-670. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||