[1] RUBAT DU MERAC M, KLEEBE H J, MÜLLER M M, et al. Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel[J]. Journal of the American Ceramic Society, 2013, 96(11): 3341-3365.
[2] SOKOL M, RATZKER B, KALABUKHOV S, et al. Transparent polycrystalline magnesium aluminate spinel fabricated by spark plasma sintering[J]. Advanced Materials, 2018, 30(41): 1706283.
[3] SHI Z Q, ZHAO Q L, GUO B, et al. A review on processing polycrystalline magnesium aluminate spinel (MgAl2O4): sintering techniques, material properties and machinability[J]. Materials & Design, 2020, 193: 108858.
[4] MCCAULEY J W, PATEL P, CHEN M W, et al. AlON: a brief history of its emergence and evolution[J]. Journal of the European Ceramic Society, 2009, 29(2): 223-236.
[5] ZHENG K P, WANG H, XU P Y, et al. Effect of nitrogen content on optical properties of transparent γ-AlON polycrystalline ceramics[J]. Journal of the European Ceramic Society, 2021, 41(7): 4319-4326.
[6] GRANON A, GOEURIOT P, THEVENOT F. Aluminum magnesium oxynitride: a new transparent spine1 ceramic[J]. Journal of the European Ceramic Society, 1995, 15(3): 249-254.
[7] ZONG X, WANG H, GU H G, et al. Highly transparent Mg0.27Al2.58O3.73N0.27 ceramic fabricated by aqueous gelcasting, pressureless sintering, and post-HIP[J]. Journal of the American Ceramic Society, 2019, 102(11): 6507-6516.
[8] GOLDSTEIN A, YESHURUN Y, VULFSON M, et al. Fabrication of transparent polycrystalline ZnAl2O4-a new optical bulk ceramic[J]. Journal of the American Ceramic Society, 2012, 95(3): 879-882.
[9] XU P Y, WANG H, TU B T, et al. Effect of yttrium-doped grain boundary on sintering behavior and properties of transparent ZnAl2O4 ceramics[J]. Journal of the European Ceramic Society, 2024, 44(11): 6597-6606.
[10] MÉVEL C, CARREAUD J, DELAIZIR G, et al. First ZnGa2O4 transparent ceramics[J]. Journal of the European Ceramic Society, 2021, 41(9): 4934-4941.
[11] WANG B, WANG H, CHEN B W, et al. A novel durable spinel-type ZnGa2O4 transparent ceramic with wide transmission range[J]. Scripta Materialia, 2021, 205: 114186.
[12] LI S Q, WANG H, WANG B, et al. Exploring the relationship between crystalline structure and intrinsic properties for MgGa2O4 transparent ceramic with the bond valence method[J]. Journal of Ceramic Science and Technology, 2021, 12(2): 87-96.
[13] TU B T, TU G S, WANG H, et al. Highly transparent MgAl0.5Ga1.5O4 ceramic for overcoming the trade-off between infrared transmittance and mechanical properties[J]. Scripta Materialia, 2022, 216: 114756.
[14] YANG J Y, WANG H, TU B T, et al. Preparation and optical properties of highly transparent MgAl1.9Ga0.1O4 ceramics via aqueous gel-casting method[J]. Journal of the European Ceramic Society, 2023, 43(10): 4506-4516.
[15] ALLIX M, CHENU S, VÉRON E, et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4[J]. Chemistry of Materials, 2013, 25(9): 1600-1606.
[16] GAO D L, KUANG Q Q, GAO F, et al. Achieving opto-responsive multimode luminescence in Zn1+xGa2-2xGexO4: Mn persistent phosphors for advanced anti-counterfeiting and information encryption[J]. Materials Today Physics, 2022, 27: 100765.
[17] XIONG Y, XIE H Y, RAO Z G, et al. Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties[J]. Journal of Advanced Ceramics, 2021, 10(6): 1360-1370.
[18] CARREAUD J, DUCLERE J R, LAUNAY Y, et al. Fabrication and optical properties of transparent fine-grained Zn1.1Ga1.8Ge0.1O4 and Ni2+ (or Cr3+)-doped Zn1.1Ga1.8Ge0.1O4 spinel ceramics[J]. Journal of the European Ceramic Society, 2023, 43(11): 4976-4984.
[19] FU Z C, LI X D, ZHANG M, et al. Achieving fabrication of highly transparent Y2O3 ceramics via air pre-sintering by deionization treatment of suspension[J]. Journal of the American Ceramic Society, 2021, 104(6): 2689-2701.
[20] REN Y, LI X D, ZHANG Z, et al. Effects of Zr4+-doping on the properties of (Lu, Gd)2O3∶Eu transparent ceramics: insight from the photoluminescent spectra in as-sintered and annealed state[J]. Ceramics International, 2023, 49(11): 18541-18551.
[21] GALAZKA Z, GANSCHOW S, SCHEWSKI R, et al. Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals[J]. APL Materials, 2019, 7(2): 022512.
[22] TSUKUMA K, YAMASHITA I, KUSUNOSE T. Transparent 8 mol% Y2O3-ZrO2 (8Y) ceramics[J]. Journal of the American Ceramic Society, 2008, 91(3): 813-818.
[23] KERBART G, MANIÈRE C, HARNOIS C, et al. Master sintering curve with dissimilar grain growth trajectories: a case study on MgAl2O4[J]. Journal of the European Ceramic Society, 2021, 41(1): 1048-1051.
[24] BRATTON R J. Sintering and grain-growth kinetics of MgAl2O4[J]. Journal of the American Ceramic Society, 1971, 54(3): 141-143.
[25] GOLDSTEIN A. Development of a technology for the obtainment of fine grain size, transparent MgAl2O4 spinel parts[J]. Journal of Ceramic Science and Technology, 2011, 2(1):1-8.
[26] WANG S Q, ZHOU T Y, ZHENG X Y, et al. Effect of powder dispersity on the optical properties of HIP sintered MgAl2O4 transparent ceramics[J]. Ceramics International, 2023, 49(23): 37586-37593.
[27] MACA K, POUCHLY V, BOCCACCINI A R. Sintering densification curve: a practical approach for its construction from dilatometric shrinkage data[J]. Science of Sintering, 2008, 40(2): 117-122.
[28] BERNARD-GRANGER G, GUIZARD C. Apparent activation energy for the densification of a commercially available granulated zirconia powder[J]. Journal of the American Ceramic Society, 2007, 90(4): 1246-1250.
[29] BENAMEUR N, BERNARD-GRANGER G, ADDAD A, et al. Sintering analysis of a fine-grained alumina-magnesia spinel powder[J]. Journal of the American Ceramic Society, 2011, 94(5): 1388-1396.
[30] GASGNIER G, BAUMARD J F, BONCOEUR M, et al. Enhanced densification of yttria by addition of titanium oxide[J]. Journal of the European Ceramic Society, 1994, 13(1): 67-72.
[31] CHAIM R, KALINA M, SHEN J Z. Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering[J]. Journal of the European Ceramic Society, 2007, 27(11): 3331-3337.
[32] GUO S Q, WANG H, XU P Y, et al. Effect of pretreated microstructure on subsequent sintering performance of MgAl2O4 ceramics[J]. Ceramics International, 2019, 45(6): 7544-7551.
[33] WANG J, RAJ R. Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina, and alumina doped with zirconia or titania[J]. Journal of the American Ceramic Society, 1990, 73(5): 1172-1175.
[34] REIMANIS I, KLEEBE H J. A review on the sintering and microstructure development of transparent spinel (MgAl2O4)[J]. Journal of the American Ceramic Society, 2009, 92(7): 1472-1480.
[35] RYERSON F J, MCKEEGAN K D. Determination of oxygen self-diffusion in åkermanite, anorthite, diopside, and spinel: implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions[J]. Geochimica et Cosmochimica Acta, 1994, 58(17): 3713-3734.
[36] GRUFFEL P, CARRY C. Effect of grain size on yttrium grain boundary segregation in fine-grained alumina[J]. Journal of the European Ceramic Society, 1993, 11(3): 189-199.
[37] MAYO M J. Processing of nanocrystalline ceramics from ultrafine particles[J]. International Materials Reviews, 1996, 41(3): 85-115.
[38] ZHAO Q Q, WANG H, TU B T, et al. KNbTeO6 transparent ceramics prepared by the combination of pressure-less sintering and pseudo hot isostatic pressing[J]. Journal of the European Ceramic Society, 2023, 43(9): 4226-4231.
[39] KRELL A, HUTZLER T, KLIMKE J. Transmission physics and consequences for materials selection, manufacturing, and applications[J]. Journal of the European Ceramic Society, 2009, 29(2): 207-221. |