[1] HARRIS D C. Materials for infrared windows and domes: properties and performance[M]. Bellingham, Washington: SPIE Optical Engineering Press, 1999. [2] GARDON R. The emissivity of transparent materials[J]. Journal of the American Ceramic Society, 1956, 39(8): 278-285. [3] LE DEZ V, LALLEMAND M. Thermal emission of axisymmetric bodies of semi-transparent materials[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1992, 47(5): 345-352. [4] IKEGAMI T, LI J G, MORI T, et al. Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide[J]. Journal of the American Ceramic Society, 2004, 85(7): 1725-1729. [5] IKEGAMI T, MORI T, YAJIMA Y, et al. Fabrication of transparent yttria ceramics through the synthesis of ytttrium hydroxide at low temperature and doping by sulfate ions[J]. Journal of the Ceramic Society of Japan, 1999, 107(1243): 297-299. [6] SOVA R M, LINEVSKY M J, THOMAS M E, et al. High-temperature optical properties of oxide dome materials[C]//Window and Dome Technologies and Materials III. San Diego, CA. SPIE, 1992: 27-40. [7] THOMAS M E, JOSEPH R I, TROPF W J. Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency[J]. Applied Optics, 1988, 27(2): 239-245. [8] KRELL A, BLANK P, MA H W, et al. Processing of high-density submicrometer Al2O3 for new applications[J]. Journal of the American Ceramic Society, 2003, 86(4): 546-553. [9] RAMAVATH P, BISWAS P, RAJESWARI K, et al. Optical and mechanical properties of compaction and slip cast processed transparent polycrystalline spinel ceramics[J]. Ceramics International, 2014, 40(4): 5575-5581. [10] LEWIS J A. Colloidal processing of ceramics[J]. Journal of the American Ceramic Society, 2000, 83(10): 2341-2359. [11] KURODA Y, HAMANO H, MORI T, et al. Specific adsorption behavior of water on a Y2O3 surface[J]. Langmuir, 2000, 16(17): 6937-6947. [12] SUN Z Q, ZHU X W, LI M S, et al. Hydrolysis and dispersion properties of aqueous Y2Si2O7 suspensions[J]. Journal of the American Ceramic Society, 2009, 92(1): 54-61. [13] YASREBI M, SPRINGGATE M E, NIKOLAS D G, et al. Colloidal stability of zirconia-doped yttria-silica binary aqueous suspensions[J]. Journal of the American Ceramic Society, 1997, 80(6): 1615-1618. [14] YASREBI M, ZIOMEK-MOROZ M, KEMP W, et al. Role of particle dissolution in the stability of binary yttria-silica colloidal suspensions[J]. Journal of the American Ceramic Society, 1996, 79(5): 1223-1227. [15] YU J L, YANG J L, HUANG Y. The transformation mechanism from suspension to green body and the development of colloidal forming[J]. Ceramics International, 2011, 37(5): 1435-1451. [16] AMAT N F, MUCHTAR A, YAHAYA N, et al. Comparison between slip casting and cold isostatic pressing for the fabrication of nanostructured zirconia[J]. Advanced Materials Research, 2014, 896: 335-338. [17] LUTHER E E, YANEZ J A, FRANKS G V, et al. Effect of ammonium citrate on the rheology and particle packing of alumina slurries[J]. Journal of the American Ceramic Society, 1995, 78(6): 1495-1500. [18] UCHIKOSHI T, HISASHIGE T, SAKKA Y. Stabilization of yttria aqueous suspension with polyethylenimine and electrophoretic deposition[J]. Journal of the Ceramic Society of Japan, 2002, 110(1285): 840-843. [19] MOUZON J, GLOWACKI E, ODÉN M. Comparison between slip-casting and uniaxial pressing for the fabrication of translucent yttria ceramics[J]. Journal of Materials Science, 2008, 43(8): 2849-2856. [20] FU Z C, LI X D, ZHANG M, et al. Achieving fabrication of highly transparent Y2O3 ceramics via air pre-sintering by deionization treatment of suspension[J]. Journal of the American Ceramic Society, 2021, 104(6): 2689-2701. [21] HUO D, ZHENG Y C, SUN X D, et al. Preparation of transparent Y2O3 ceramic by slip casting and vacuum sintering[J]. Journal of Rare Earths, 2012, 30(1): 57-62. [22] SANTACRUZ I, ANAPOORANI K, BINNER J. Preparation of high solids content nanozirconia suspensions[J]. Journal of the American Ceramic Society, 2008, 91(2): 398-405. [23] SANTOS S C, ACCHAR W, YAMAGATA C, et al. Yttria nettings by colloidal processing[J]. Journal of the European Ceramic Society, 2014, 34(10): 2509-2517. [24] JIN L L, MAO X J, WANG S W, et al. Optimization of the rheological properties of yttria suspensions[J]. Ceramics International, 2009, 35(2): 925-927. [25] HE J, LI X D, LI J G, et al. Colloidal stability of aqueous suspensions of nano-yttria powders[J]. International Journal of Materials Science and Engineering, 2013: 28-31. [26] WANG G, HE R J, HE F. Improving dispersibility of hafnium diboride in aqueous media using polyacrylic acid and ammonium citrate[J]. Powder Technology, 2014, 253: 163-165. [27] WU L N, HUANG Y D, WANG Z J, et al. Interaction and dispersion stability of alumina suspension with PAA in N, N’-dimethylformamide[J]. Journal of the European Ceramic Society, 2010, 30(6): 1327-1333. [28] JONES F, FARROW J B, VAN BRONSWIJK W. An infrared study of a polyacrylate flocculant adsorbed on hematite[J]. Langmuir, 1998, 14(22): 6512-6517. [29] 回瑞华, 关崇新, 侯冬岩. 羧酸及其盐红外光谱特性的研究[J]. 鞍山师范学院学报, 2001, 3(1): 95-98. HUI R H, GUAN C X, HOU D Y. Study on IR characteristics of carboxylic acid and their salts[J]. Journal of Anshan Teachers College, 2001, 3(1): 95-98 (in Chinese). [30] SCHÜTZE M, CAHN R, HAASEN P, et al. Corrosion and environmental degradation, 2 volume set[J]. Corrosion and Environmental Degradation, 2001, 2:1110. [31] DAVIES J, BINNER J G P. The role of ammonium polyacrylate in dispersing concentrated alumina suspensions[J]. Journal of the European Ceramic Society, 2000, 20(10): 1539-1553. [32] BOSCHINI F, RULMONT A, CLOOTS R, et al. Colloidal stability of aqueous suspensions of Barium zirconate[J]. Journal of the European Ceramic Society, 2005, 25(13): 3195-3201. |