人工晶体学报 ›› 2024, Vol. 53 ›› Issue (12): 2043-2058.
赵文海1, 陶世旭1, 童思意1, 唐健1, 左传东1,2, 曹永革1,3, 麻朝阳1
收稿日期:
2024-09-13
出版日期:
2024-12-15
发布日期:
2024-12-20
通信作者:
麻朝阳,博士,副研究员。E-mail:machaoyang@sslab.org.cn。麻朝阳,博士,松山湖材料实验室副研究员。主要从事光功能透明/荧光陶瓷的制备及光学性能研究。主持/参与国家、省部级科研项目5项。以第一/通信作者身份在J Mater Sci Technol、Adv Opt Mater、J Euro Ceram Soc、Appl Phys Lett、J Am Ceram Soc、Opt Lett等SCI期刊发表论文30余篇。
作者简介:
赵文海(1999—),男,河南省人,硕士,助理工程师。E-mail:414714364@qq.com
基金资助:
ZHAO Wenhai1, TAO Shixu1, TONG Siyi1, TANG Jian1, ZUO Chuandong1,2, CAO Yongge1,3, MA Chaoyang1
Received:
2024-09-13
Online:
2024-12-15
Published:
2024-12-20
摘要: 倍半氧化物Lu2O3因具有优异的热力学性能、低声子能量和强晶体场等特点,成为近红外和中红外光谱(1~3 μm)范围内的宽带发射高功率激光基体材料的优秀候选者之一,近年来受到人们的广泛关注。Lu2O3的熔点高达2 450 ℃,单晶生长极为困难,限制了其应用发展。但Lu2O3属于立方晶系,具有光学各向同性,因此制备Lu2O3基透明陶瓷成为一种可行的方案。透明陶瓷可以在较低的温度下(晶体熔点的60%~80%)烧结制备大尺寸样品,同时烧结周期相较于晶体生长周期大幅缩减,更有利于大量生产,因此制备Lu2O3基透明陶瓷作为新型激光介质材料更有潜力被广泛应用于科学研究、工业生产和日常生活。本文总结了基于稀土离子(Nd3+、Er3+、Yb3+、Tm3+、Ho3+)掺杂的Lu2O3基激光透明陶瓷的制备工艺及其性能参数的最新研究进展。未来,Lu2O3基激光陶瓷的开发将聚焦在大尺寸、高功率输出、低散射特性、高热稳定性、复合结构设计等方面以推动高性能固体激光器的发展。
中图分类号:
赵文海, 陶世旭, 童思意, 唐健, 左传东, 曹永革, 麻朝阳. Lu2O3基激光透明陶瓷的研究进展[J]. 人工晶体学报, 2024, 53(12): 2043-2058.
ZHAO Wenhai, TAO Shixu, TONG Siyi, TANG Jian, ZUO Chuandong, CAO Yongge, MA Chaoyang. Research Progress on Lu2O3 Based Laser Transparent Ceramics[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2043-2058.
[1] 张 萌. Er:Lu2O3晶体3 μm波段激光特性研究[D]. 济南: 山东大学, 2023. ZHANG M. Study on laser characteristics of Er:Lu2O3 crystal in 3 μm band[D]. Jinan: Shandong University, 2023 (in Chinese). [2] 李 涛. 2.79 μm中红外固体激光器[D]. 沈阳: 沈阳理工大学, 2023. LI T. 2.79 μm mid-infrared solid-state laser[D]. Shenyang: Shenyang Ligong University, 2023 (in Chinese). [3] 董琳琳. Yb掺杂Lu2O3透明陶瓷的制备及其光学性能的研究[D]. 天津: 天津大学, 2019. DONG L L. Preparation and optical properties of Yb-doped Lu2O3 transparent ceramics[D]. Tianjin: Tianjin University, 2019 (in Chinese). [4] 敬 畏. (Lu1-xScx)2O3激光陶瓷的高透明化制备与性能研究[D]. 绵阳: 中国工程物理研究院, 2019. JING W. Preparation and properties of (Lu1-xScx)2O3 laser ceramics with high transparency[D]. Mianyang: China Academy of Engineering Physics, 2019 (in Chinese). [5] PETERMANN K, HUBER G, FORNASIERO L, et al. Rare-earth-doped sesquioxides[J]. Journal of Luminescence, 2000, 87: 973-975. [6] LIU Z Y, IKESUE A, LI J. Research progress and prospects of rare-earth doped sesquioxide laser ceramics[J]. Journal of the European Ceramic Society, 2021, 41(7): 3895-3910. [7] PETERMANN K, FORNASIERO L, MIX E, et al. High melting sesquioxides: crystal growth, spectroscopy, and laser experiments[J]. Optical Materials, 2002, 19(1): 67-71. [8] 潘裕柏, 陈昊鸿, 石 云. 稀土陶瓷材料[M]. 北京: 冶金工业出版社, 2016. PAN Y B, CHEN H H, SHI Y. Rare earth ceramic materials[M]. Beijing: Metallurgical Industry Press, 2016 (in Chinese). [9] 潘裕柏, 李 江, 姜本学. 先进光功能透明陶瓷[M]. 北京: 科学出版社, 2013. PAN Y B, LI J, JIANG B X. Advanced optical function transparent ceramics[M]. Beijing: Science Press, 2013 (in Chinese). [10] ZYCH E, TROJAN-PIEGZA J, DORENBOS P. Radioluminescence of Lu2O3:Eu nanocrystalline powder and vacuum-sintered ceramic[J]. Radiation Measurements, 2004, 38(4/5/6): 471-474. [11] SHI Y, CHEN Q W, SHI J L. Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics[J]. Optical Materials, 2009, 31(5): 729-733. [12] SEELEY Z M, KUNTZ J D, CHEREPY N J, et al. Transparent Lu2O3:Eu ceramics by sinter and HIP optimization[J]. Optical Materials, 2011, 33(11): 1721-1726. [13] REN Y, LI X D, ZHANG Z, et al. Effects of Zr4+-doping on the properties of (Lu, Gd)2O3:Eu transparent ceramics: insight from the photoluminescent spectra in as-sintered and annealed state[J]. Ceramics International, 2023, 49(11): 18541-18551. [14] ZHAO W H, XU T, WANG Y Z, et al. Sintering mechanism and optical properties of (Lu1-xScxEu0.05)2O3 scintillation ceramics[J]. Journal of the European Ceramic Society, 2024, 44(7): 4631-4638. [15] GRUBER J B, SARDAR D K, YOW R M, et al. Energy-level structure and spectral analysis of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12[J]. 2004, 96(6): 3050-3056. [16] LI J H, LIU X H, WU J B, et al. High-power diode-pumped Nd:Lu2O3 crystal continuouswave thin-disk laser at 1359 nm[J]. Laser Physics Letters, 2012, 9(3): 195-198. [17] JU M, XIAO Y, ZHONG M M, et al. New theoretical insights into the crystal-field splitting and transition mechanism for Nd3+-doped Y3Al5O12[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10745-10750. [18] VON BRUNN P, HEUER A M, FORNASIERO L, et al. Efficient laser operation of Nd3+:Lu2O3 at various wavelengths between 917 nm and 1 463 nm[J]. Laser Physics, 2016, 26(8): 084003. [19] HAO L Z, WU K, CONG H J, et al. Spectroscopy and laser performance of Nd:Lu2O3 crystal[J]. Optics Express, 2011, 19(18): 17774-17779. [20] 薛学刚, 张 芳, 赵海泉. 掺钕钇铝石榴石(Nd:YAG)激光棒激光诱导色心吸收对1 064 nm激光输出的影响[J]. 人工晶体学报, 2018, 47(5): 1083-1088. XUE X G, ZHANG F, ZHAO H Q. Influence of the Nd: YAG laser-induced color center absorption on 1064 nm laser output power[J]. Journal of Synthetic Crystals, 2018, 47(5): 1083-1088 (in Chinese). [21] PAVEL N. Simultaneous dual-wavelength emission at 0.90 and 1.06 μm in Nd-doped laser crystals[J]. Laser Physics, 2010, 20(1): 215-221. [22] HUANG B, YI Q, YANG L L, et al. Dual-wavelength nanosecond Nd:YVO4 laser with switchable inhomogeneous polarization output[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1601305. [23] PANG S Y, QIAN X B, WU Q H, et al. Structure and spectral property of Sc doped Nd:CaF2 laser crystals[J]. Journal of Inorganic Materials, 2018, 33(8): 873. [24] DANAILOV M B, MILEV I I. Simultaneous multiwavelength operation of Nd:YAG laser[J]. Applied Physics Letters, 1992, 61(7): 746-748. [25] BOULESTEIX R, EPHERRE R, NOYAU S, et al. Highly transparent Nd:Lu2O3 ceramics obtained by coupling slip-casting and spark plasma sintering[J]. Scripta Materialia, 2014, 75: 54-57. [26] DAI Z F, LIU Q, TOCI G, et al. Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders[J]. Journal of the European Ceramic Society, 2018, 38(4): 1632-1638. [27] BALLATO J, MCMILLEN C, KOKUOZ B, et al. The synthesis and properties of rare earth doped yttria and scandia for eye-safe single crystal and ceramic lasers[C]//Solid State Lasers XVII: Technology and Devices. San Jose, CA. SPIE, 2008, 6871: 68711G. [28] LU J, TAKAICHI K, UEMATSU T, et al. Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic[J]. 2002, 81(23): 4324-4326. [29] AN L Q, ITO A, GOTO T. Fabrication of transparent lutetium oxide by spark plasma sintering[J]. Journal of the American Ceramic Society, 2011, 94(3): 695-698. [30] 杨成东, 鲁远甫, 章 健, 等. 放电等离子体烧结法制备的Nd:Lu2O3陶瓷的高效激光运转[J]. 集成技术, 2017, 6(6): 37-46. YANG C D, LU Y F, ZHANG J, et al. Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by spark plasma sintering[J]. Journal of Integration Technology, 2017, 6(6): 37-46 (in Chinese). [31] 刘子玉, TOCI Guido, PIRRI Angela, 等. 固体激光用Nd:Lu2O3透明陶瓷的制备和光学性能研究(英文)[J]. 无机材料学报, 2021, 36(2):210-216. LIU Z Y, TOCI GUIDO, PIRRI Angela, et al. Preparation and Optical Properties of Nd:Lu2O3 transparent ceramics for solid-state laser [J]. Journal of Inorganic Materials, 2019, 36(2): 210-216. [32] YAO W C, UEHARA H, TOKITA S, et al. LD-pumped 2.8 μm Er:Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency[J]. Applied Physics Express, 2021, 14(1): 012001. [33] YOU L, LU D Z, PAN Z B, et al. High-efficiency 3 μm Er:YGG crystal lasers[J]. Optics Letters, 2018, 43(23): 5873-5876. [34] DINERMAN B J, MOULTON P F. 3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145. [35] YAO W C, UEHARA H, KAWASE H, et al. Highly efficient Er:YAP laser with 6.9 W of output power at 2920 nm[J]. Optics Express, 2020, 28(13): 19000-19007. [36] KRÄNKEL C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1602013. [37] LI T, BEIL K, KRÄNKEL C, et al. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm[J]. Optics Letters, 2012, 37(13): 2568-2570. [38] HEUER A M, VON BRUNN P, HUBER G, et al. Dy3+:Lu2O3 as a novel crystalline oxide for mid-infrared laser applications[J]. Optical Materials Express, 2018, 8(11): 3447. [39] PETERS V, FORNASIERO L, MIX E, et al. Spectroscopic characterization and diode-pumped laser action at 2.7 μm of Er:Lu2O3[C]. Technical Digest of the Conference on Lasers and Electro-Optics Europe, 1998: 379. [40] 王贵吉, 尹延如, 贾志泰, 等. Er:Lu2O3单晶的导模法生长及性能表征[J]. 人工晶体学报, 2021, 50(4): 747-751+756. WANG G J, YIN Y R, JIA Z T, et al. Growth and property characterization of Er:Lu2O3 single crystals by EFG method[J]. Journal of Synthetic Crystals, 2021, 50(4): 747-751+756 (in Chinese). [41] YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er:Lu2O3 single crystals by the edge-defined film-fed technique[J]. CrystEngComm, 2020, 22(39): 6569-6573. [42] 张 萌, 王贵吉, 梁洋洋, 等. 导模法生长Er:Lu2O3连续激光特性[J]. 发光学报, 2023, 44(2): 240-245. ZHANG M, WANG G J, LIANG Y Y, et al. Continuous-wave laser properties of Er:Lu2O3 crystal grown by EFG method[J]. Chinese Journal of Luminescence, 2023, 44(2): 240-245 (in Chinese). [43] SANAMYAN T, SIMMONS J, DUBINSKII M. Efficient cryo-cooled 2.7-μm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level[J]. Laser Physics Letters, 2010, 7(8): 569-572. [44] DING M M, LI X X, WANG F, et al. Power scaling of diode-pumped Er:Y2O3 ceramic laser at 2.7 μm[J]. Applied Physics Express, 2022, 15(6): 062004. [45] WANG L, HUANG H T, SHEN D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 27 μm[J]. Optics Express, 2014, 22(16): 19495. [46] UEHARA H, YASUHARA R, TOKITA S, et al. Efficient continuous wave and quasi-continuous wave operation of a 2.8 μm Er:Lu2O3 ceramic laser[J]. Optics Express, 2017, 25(16): 18677-18684. [47] UEHARA H, TOKITA S, KAWANAKA J, et al. Optimization of laser emission at 2.8 μm by Er:Lu2O3 ceramics. Optics Express, 2018, 26(3): 3497-3507. [48] UEHARA H, TOKITA S, KAWANAKA J, et al. A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 μm with a graphene saturable absorber. Applied Physics Express, 2019, 12(2): 022002. [49] 董仲伟. Yb:LiYF4激光晶体生长与性能研究[D]. 长春: 长春理工大学, 2011. DONG Z W. Growth and properties of Yb:LiYF4 laser crystal[D]. Changchun: Changchun University of Science and Technology, 2011 (in Chinese). [50] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3:Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3. [51] TAKAYUKI Y, YRTAKA F, HIDEKI Y. et al. Optical and scintillation properties oftrans parent ceramic Yb:Lu2O3 with different Yb concentrations[J]. Optical Materials, 2014, 36: 1044-1048. [52] SANGHERA J, KIM W, BAKER C, et al. Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic[J]. Optical Materials, 2011, 33(5): 670-674. [53] SANGHERA J, FRANTZ J, KIM W, et al. 10% Yb3+-Lu2O3 ceramic laser with 74% efficiency[J]. Optics Letters, 2011, 36(4): 576-578. [54] LIU Q, LI J B, DAI J W, et al. Fabrication, microstructure and spectroscopic properties of Yb:Lu2O3 transparent ceramics from co-precipitated nanopowders[J]. Ceramics International, 2018, 44(10): 11635-11643. [55] SU X, WANG Y, YIN Y, et al. Sub-100-fs Kerr-lens mode-locked Yb:Lu2O3 laser with more than 60% optical efficiency[J]. Opt Lett, 2024, 49(1): 145-148. [56] DONG L L, MA M Z, JING W, et al. Synthesis of highly sinterable Yb:Lu2O3 nanopowders via spray co-precipitation for transparent ceramics[J]. Ceramics International, 2019, 45(15): 19554-19561. [57] ESSER S, RÖHRER C, XU X D, et al. Ceramic Yb:Lu2O3 thin-disk laser oscillator delivering an average power exceeding 1 kW in continuous-wave operation[J]. Optics Letters, 2021, 46(24): 6063-6066. [58] 杨瀚林. Tm, Ho:(Lu1-xScx)2O3激光陶瓷的高透明化制备与性能研究[D]. 天津: 天津大学, 2021. YANG H L. Preparation and properties of Tm, Ho:(Lu1-xScx)2O3 laser ceramics with high transparency[D]. Tianjin: Tianjin University, 2021 (in Chinese). [59] CHEN Q W, SHI Y, AN L Q, et al. Fabrication and photoluminescence characteristics of Eu3+-doped Lu2O3 transparent ceramics[J]. Journal of the American Ceramic Society, 2006, 89(6): 2038-2042. [60] EICHHORN M. Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions[J]. Applied Physics B, 2008, 93(2): 269-316. [61] SCHOLLE K, LAMRINI S, KOOPMANN P, et al. 2 μm laser sources and their possible applications[M]//Frontiers in Guided Wave Optics and Optoelectronics. Croatia: InTech, 2010. [62] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. High power diode pumped 2 μm laser operation of Tm:Lu2O3//Conference on Lasers and Electro-Optics. Optica Publishing Group, 2010: CMDD1. [63] KOOPMANN P, PETERS R, PETERMANN K, et al. Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μm[J]. Applied Physics B, 2011, 102(1): 19-24. [64] TAKAICHI K, YAGI H, SHIRAKAWA A, et al. Lu2O3:Yb3+ ceramics-a novel gain material for high-power solid-state lasers[J]. Physica Status Solidi (a), 2005, 202(1): R1-R3. [65] UEDA K, BISSON J F, YAGI H, et al. Scalable ceramic lasers[J]. Laser Physics-Lawrence, 2005, 15(7): 927. [66] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm[J]. Optics Letters, 2011, 36(6): 948-950. [67] ANTIPOV O L, GOLOVKIN S Y, GORSHKOV O N, et al. Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics[J]. Quantum Electronics, 2011, 41(10): 863-868. [68] ANTIPOV O L, NOVIKOV A A, ZAKHAROV N G, et al. Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics[J]. Optical Materials Express, 2012, 2(2): 183-189. [69] LAGATSKY A A, HOPKINS J M. Diode-pumped femtosecond Tm-doped Lu2O3 ceramic laser//Laser Applications Conference. Optica Publishing Group, 2016: JTu2A. 5. [70] MORRIS J, STEVENSON N K, BOOKEY H T, et al. 1.9 μm waveguide laser fabricated by ultrafast laser inscription in Tm:Lu2O3 ceramic[J]. Optics Express, 2017, 25(13): 14910-14917. [71] VETROVEC J, FILGAS D M, SMITH C A, et al. 2-micron lasing in Tm:Lu2O3 ceramic: initial operation[C]//Solid State Lasers XXVII: Technology and Devices. January 27-February 1, 2018. San Francisco, USA. SPIE, 2018: 6-15. [72] PAYNE S A, CHASE L L, SMITH L K, et al. Infrared cross-section measurements for crystals doped with Er3, Tm3, and Ho3[J]. IEEE Journal of Quantum Electronics, 1992, 28(11): 2619-2630. [73] WANG Y C, LAN R J, MATEOS X, et al. Broadly tunable mode-locked Ho:YAG ceramic laser around 21 μm[J]. Optics Express, 2016, 24(16): 18003-18012. [74] CHEN H, SHEN D Y, ZHANG J, et al. In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm[J]. Optics Letters, 2011, 36(9): 1575-1577. [75] CHENG X J, XU J Q, WANG M J, et al. Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature[J]. Laser Physics Letters, 2010, 7(5): 351-354. [76] IKESUE A, AUNG Y L, LUPEI V. Preface[M]//Ceramic Lasers. Cambridge: Cambridge University Press, 2013. [77] LAMRINI S, KOOPMANN P, SCHÄFER M, et al. Efficient laser operation of Ho:Lu2O3 at room temperature[C]//2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC). May 22-26, 2011, Munich, Germany. IEEE, 2011: CA1_6. [78] DONG J, WANG W, XUE Y, et al. Crystal growth and spectroscopic analysis of Ho:Lu2O3 crystal for mid-infrared emission. Journal of Luminescence, 2022, 251: 119192. [79] KIM W, BAKER C, FLOREA C, et al. Doped sesquioxide ceramic for eye-safe solid state laser materials[C]//Solid State Lasers XXII: Technology and Devices. San Francisco, California, USA. SPIE, 2013: 104-109. [80] VIERS L, DELAUNAY F, BOULESTEIX R, et al. Study of densification mechanisms during spark plasma sintering of co-precipitated Ho:Lu2O3 nanopowders: application to transparent ceramics for lasers[J]. Journal of the European Ceramic Society, 2021, 41(14): 7199-7207. [81] VIERS L, GUENÉ-GIRARD S, DALLA-BARBA G, et al. Optical and spectroscopic properties of Ho:Lu2O3 transparent ceramics elaborated by spark plasma sintering[J]. Ceramics, 2024, 7(1): 208-221. [82] YIN D L, MA J, LIU P, et al. Submicron-grained Yb:Lu2O3 transparent ceramics with lasing quality[J]. Journal of the American Ceramic Society, 2019, 102(5): 2587-2592. [83] KIM W, BAKER C, BOWMAN S, et al. Laser oscillation from Ho3+ doped Lu2O3 ceramics[J]. Optical Materials Express, 2013, 3(7): 913. [84] NEWBURGH G A, WORD-DANIELS A, MICHAEL A, et al. Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 μm laser[J]. Optics Express, 2011, 19(4): 3604-3611. [85] JING W, LOIKO P, SERRES J M, et al. Synthesis, spectroscopic characterization and laser operation of Ho3+ in “mixed” (Lu, Sc)2O3 ceramics[J]. Journal of Luminescence, 2018, 203: 145-151. [86] XU X D, HU Z W, LI D Z, et al. First laser oscillation of diode-pumped Tm3+-doped LuScO3 mixed sesquioxide ceramic[J]. Optics Express, 2017, 25(13): 15322. [87] KOOPMANN P, LAMRINI S, SCHOLLE K, et al. Laser operation and spectroscopic investigations of Tm:LuScO3[C]. CLEO/Europe, 2011: CA1-4. [88] BASYROVA L, LOIKO P, JING W, et al. Spectroscopy and efficient laser operation around 2.8 μm of Er:(Lu, Sc)2O3 sesquioxide ceramics[J]. Journal of Luminescence, 2021, 240: 118373. [89] LI D Z, KONG L C, XU X D, et al. Spectroscopy and mode-locking laser operation of Tm:LuYO3 mixed sesquioxide ceramic[J]. Optics Express, 2019, 27(17): 24416-24425. [90] CHEN G Z, LI S M, FANG Q N, et al. Growth and spectroscopy of Er:LuYO3 single crystal[J]. Journal of Luminescence, 2021, 239: 118347. [91] ZHAO Y G, WANG L, WANG Y C, et al. SWCNT-SA mode-locked Tm:LuYO3 ceramic laser delivering 8-optical-cycle pulses at 2.05 μm[J]. Optics Letters, 2020, 45(2): 459-462. [92] MONCORGÉ R, GUYOT Y, KRÄNKEL C, et al. Mid-infrared emission properties of the Tm3+-doped sesquioxide crystals Y2O3, Lu2O3, Sc2O3 and mixed compounds (Y, Lu, Sc)2O3 around 1.5-, 2- and 2.3-μm[J]. Journal of Luminescence, 2022, 241: 118537. [93] YANG C L, HUANG J Q, HUANG Q F, et al. Optical, thermal, and mechanical properties of (Y1-xScx)2O3 transparent ceramics[J]. Journal of Advanced Ceramics, 2022, 11(6): 901-911. |
[1] | 甘世雁, 梅炳初, 李威威. Er,Na:CaF2透明陶瓷的制备与光谱性能研究[J]. 人工晶体学报, 2024, 53(12): 2059-2065. |
[2] | 任永春, 李健达, 曹笑, 黄燚, 张帆, 张宁, 薛艳艳, 王庆国, 唐慧丽, 徐晓东, 董永军, 徐军. 高熔点稀土氧化物激光晶体的研究进展[J]. 人工晶体学报, 2024, 53(11): 1829-1839. |
[3] | 吉浩浩, 陈念江, 章健, 杨彧涵, 刘禹, 王士维. 3D打印钇铝石榴石基激光陶瓷研究进展[J]. 人工晶体学报, 2024, 53(11): 1840-1867. |
[4] | 李晴, 姜珍兴, 王莹, 马杰, 王俊, 刘鹏, 章健, 范金太, 于浩海, 张怀金, 唐定远. Yb∶Lu2O3透明陶瓷的制备及激光性能研究[J]. 人工晶体学报, 2024, 53(11): 1884-1891. |
[5] | 刘子玉, 郑雯雯, 冯亚刚, 叶君豪, 刘鹏, 杨现锋, 李江. 不同掺杂浓度Er∶Lu2O3透明陶瓷的制备与性能研究[J]. 人工晶体学报, 2024, 53(11): 1892-1900. |
[6] | 冯亚刚, 田丰, 刘子玉, 刘奕炀, 吴乐翔, 李廷松, 李江. 层状复合结构YAG/Yb∶YAG透明陶瓷的制备与性能研究[J]. 人工晶体学报, 2024, 53(11): 1901-1908. |
[7] | 黄秋凤, 邓志强, 陈剑, 郭旺, 邓种华, 刘著光, 黄集权. Cr掺杂YAG透明陶瓷的价态调控及光学性能研究[J]. 人工晶体学报, 2024, 53(11): 1909-1917. |
[8] | 刘强, 李想, 郭礼豪, TOCI Guido, PIRRI Angela, PATRIZI Barbara, VANNINI Matteo, 吴俊林, 李江. Yb∶CaF2透明陶瓷的压力辅助烧结及其性能研究[J]. 人工晶体学报, 2024, 53(11): 1918-1926. |
[9] | 陈杰, 沈世纪, 田燕娜, 周圣明. 铽铝石榴石磁光陶瓷真空固相反应制备及格位取代研究进展[J]. 人工晶体学报, 2024, 53(11): 1927-1935. |
[10] | 冯桂青, 徐刘伟, 袁亚舟, 郑熠, 黄鑫, 陈旻, 王帅华, 吴少凡. 稀土离子过量掺杂TSAG及YAG/TSAG复合结构透明陶瓷的制备与性能研究[J]. 人工晶体学报, 2024, 53(11): 1944-1955. |
[11] | 吴文杰, 何代华, 程思远, 何夕云. PLZT透明陶瓷的微区组分调控及梯度设计与电光性能研究[J]. 人工晶体学报, 2024, 53(11): 1956-1963. |
[12] | 王亚祺, 付大石, 王亚男, 秦亚琳, 张永成. 无铅0.96KNNTSx-0.04BNKZ透明压电陶瓷的制备及其光电性能研究[J]. 人工晶体学报, 2024, 53(11): 1964-1971. |
[13] | 汪开强, 杨康, 靖正阳, 陈博文, 涂兵田, 王皓. Zn1.1Ga1.8Ge0.1O4透明陶瓷烧结过程的动力学研究[J]. 人工晶体学报, 2024, 53(11): 1972-1980. |
[14] | 曲胜箫, 穆浩洁, 杨亮, 李晓东, 史树君, 孙旭东. 基于双分散剂协同作用胶态成型制备氧化钇透明陶瓷[J]. 人工晶体学报, 2024, 53(11): 1981-1989. |
[15] | 刘小龙, 付仲超, 吴南, 龙海波, 邵岑, 任轶, 侯朝霞, 张乐. 纳米Y2O3粉体酸洗处理对透明陶瓷光学质量的影响[J]. 人工晶体学报, 2024, 53(11): 1990-1996. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||