[1] GUO X C, HAO N H, GUO D Y, et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys and Compounds, 2016, 660: 136-140. [2] KAUR A, SIKDAR S, YADAV S K, et al. PLD-grown semi-insulating Ga2O3 thin film-based optoelectronic artificial synaptic devices for neuromorphic computing applications[J]. Advanced Materials Technologies, 2024, 9(20): 2400464. [3] JIN C, PARK S, KIM H, et al. Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors[J]. Sensors and Actuators B: Chemical, 2012, 161(1): 223-228. [4] VANITHAKUMARI S C, NANDA K K. A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors[J]. Advanced Materials, 2009, 21(35): 3581-3584. [5] ZHOU M, ZHOU H, HUANG S, et al. 1.1 A/mm ß-Ga2O3-on-SiC RF MOSFETs with 2.3 W/mm Pout and 30% PAE at 2 GHz and fT/fmax of 27.6/57 GHz[C]. In 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023: 1-42023. [6] DONG P F, WANG C L, YAN Q L, et al. Ga2O3 heterojunction PN diodes with suppressed background carrier concentration for improved breakdown voltage[C]//2023 Device Research Conference (DRC). June 25-28, 2023, Santa Barbara, CA, USA. IEEE, 2023: 1-2. [7] HAYASHI H, HUANG R, IKENO H, et al. Room temperature ferromagnetism in Mn-doped γ-Ga2O3 with spinel structure[J]. Applied Physics Letters, 2006, 89(18): 181903. [8] LEACH J H, UDWARY K, RUMSEY J, et al. Halide vapor phase epitaxial growth of β-Ga2O3 and α-Ga2O3 films[J]. APL Materials, 2018, 7(2): 022504. [9] OSHIMA Y, KAWARA K, SHINOHE T, et al. Epitaxial lateral overgrowth of α-Ga2O3 by halide vapor phase epitaxy[J]. APL Materials, 2018, 7(2): 022503. [10] CHENG Y L, XU Y, LI Z, et al. Heteroepitaxial growth of α-Ga2O3 thin films on a-, c- and r-plane sapphire substrates by low-cost mist-CVD method[J]. Journal of Alloys and Compounds, 2020, 831: 154776. [11] ZHANG C R, WU Y, LI Y B, et al. Effects of pressure difference and temperature on α-Ga2O3 growth by mist chemical vapor deposition[J]. Optical Materials Express, 2024, 14(11): 2728. [12] KANEKO K, MASUDA Y, KAN S I, et al. Ultra-wide bandgap corundum-structured p-type α-(Ir, Ga)2O3 alloys for α-Ga2O3 electronics[J]. Applied Physics Letters, 2021, 118(10): 102104. [13] SHIMAZOE K, NISHINAKA H, TANIGUCHI Y, et al. Vertical self-powered ultraviolet photodetector using α-Ga2O3 thin films on corundum structured rh-ITO electrodes[J]. Materials Letters, 2023, 341: 134282. [14] OUYANG H J, WANG X J, LI Y, et al. High-performance solar-blind photodetector based on Si-doped α-Ga2O3 thin films grown by mist chemical vapor deposition[J]. Journal of Alloys and Compounds, 2024, 1003: 175593. [15] WAKAMATSU T, ISOBE Y, TAKANE H, et al. Ge doping of α-Ga2O3 thin films via mist chemical vapor deposition and their application in Schottky barrier diodes[J]. J Appl Phys, 2024, 135(15): 155705. [16] HAO J G, GONG H H, CHEN X H, et al. In situ heteroepitaxial construction and transport properties of lattice-matched α-Ir2O3/α-Ga2O3 p-n heterojunction[J]. Applied Physics Letters, 2021, 118(26): 261601. [17] SUN H D, LI K H, TORRES CASTANEDO C G, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD[J]. Crystal Growth & Design, 2018, 18(4): 2370-2376. [18] BHUIYAN A F M A U, FENG Z X, HUANG H L, et al. Metalorganic chemical vapor deposition of α-Ga2O3 and α-(AlxGa1-x)2O3 thin films on m-plane sapphire substrates[J]. APL Materials, 2021, 9(10): 101109. [19] MCCANDLESS J P, ROWE D, PIECZULEWSKI N, et al. Growth of α-Ga2O3 on α-Al2O3 by conventional molecular-beam epitaxy and metal-oxide-catalyzed epitaxy[J]. Japanese Journal of Applied Physics, 2023, 62: SF1013. [20] WILLIAMS M S, ALONSO-ORTS M, SCHOWALTER M, et al. Growth, catalysis, and faceting of α-Ga2O3 and α-(InxGa1-x)2O3 on m-plane α-Al2O3 by molecular beam epitaxy[J]. APL Materials, 2024, 12(1): 011120. [21] GUO D Y, ZHAO X L, ZHI Y S, et al. Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films[J]. Materials Letters, 2016, 164: 364-367. [22] SUN X Y, WANG Z P, GONG H H, et al. M-plane α-Ga2O3 solar-blind detector with record-high responsivity-bandwidth product and high-temperature operation capability[J]. IEEE Electron Device Letters, 2022, 43(4): 541-544. [23] SON H, JEON D W. Optimization of the growth temperature of α-Ga2O3 epilayers grown by halide vapor phase epitaxy[J]. Journal of Alloys and Compounds, 2019, 773: 631-635. [24] WEN Z Q, KHAN K, SUN K, et al. Thermal stability of HVPE-grown (0001) α-Ga2O3 on sapphire template under vacuum and atmospheric environments[J]. Journal of Vacuum Science & Technology A, 2023, 41(4): 043403. [25] KIM S H, YANG M, LEE H Y, et al. Structural characteristics of α-Ga2O3 films grown on sapphire by halide vapor phase epitaxy[J]. Materials Science in Semiconductor Processing, 2021, 123: 105534. [26] BAE J, PARK J H, JEON D W, et al. Self-powered solar-blind α-Ga2O3 thin-film UV-C photodiode grown by halide vapor-phase epitaxy[J]. APL Materials, 2021, 9(10): 101108. [27] YU M, LV C D, YU J G, et al. High-performance photodetector based on sol-gel epitaxially grown α/β Ga2O3 thin films[J]. Materials Today Communications, 2020, 25: 101532. [28] LEE S H, LEE K M, KIM Y B, et al. Sub-microsecond response time deep-ultraviolet photodetectors using α-Ga2O3 thin films grown via low-temperature atomic layer deposition[J]. Journal of Alloys and Compounds, 2019, 780: 400-407. [29] MOLONEY J, TESH O, SINGH M, et al. Atomic layer deposited α-Ga2O3 solar-blind photodetectors[J]. Journal of Physics D: Applied Physics, 2019, 52(47): 475101. [30] VOGT S, PETERSEN C, KNEIß M, et al. Realization of conductive n-type doped α-Ga2O3 on m-plane sapphire grown by a two-step pulsed laser deposition process[J]. Physica Status Solidi (a), 2023, 220(3): 2200721. [31] PETERSEN C, VOGT S, KNEIß M, et al. PLD of α-Ga2O3 on m-plane Al2O3: growth regime, growth process, and structural properties[J]. APL Materials, 2023, 11(6): 061122. [32] KÖPP S, PETERSEN C, SPLITH D, et al. Properties of Schottky barrier diodes on heteroeptixial α- Ga2O3 thin films[J]. Journal of Vacuum Science & Technology A, 2023, 41(4): 043411. [33] LEE M, YANG M, LEE H Y, et al. The growth of HVPE α-Ga2O3 crystals and its solar-blind UV photodetector applications[J]. Materials Science in Semiconductor Processing, 2021, 123: 105565. [34] JINNO R, CHANG C S, ONUMA T, et al. Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)2O3 on m-plane sapphire[J]. Science Advances, 2021, 7(2): eabd5891. [35] LEE S D, AKAIWA K, FUJITA S. Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates[J]. Physica Status Solidi C, 2013, 10(11): 1592-1595. [36] CHEN X H, HAN S, LU Y M, et al. High signal/noise ratio and high-speed deep UV detector on β-Ga2O3 thin film composed of both (400) and (201) orientation β-Ga2O3 deposited by the PLD method[J]. Journal of Alloys and Compounds, 2018, 747: 869-878. [37] YU S J, ZHAO X L, DING M F, et al. High-detectivity β-Ga2O3 microflake solar-blind phototransistor for weak light detection[J]. IEEE Electron Device Letters, 2021, 42(3): 383-386. [38] CHEN Y C, YANG X, ZHANG Y, et al. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium[J]. Nano Research, 2022, 15(4): 3711-3719. [39] MA G L, GAO A, LIU Z, et al. Solution spin-coated BiFeO3 onto Ga2O3 towards self-powered deep UV photo detector of Ga2O3/BiFeO3 heterojunction[J]. IEEE Sensors Journal, 2021, 21(21): 23987-23994. [40] YU W J, LIU Y, ZHOU H L, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials[J]. Nature Nanotechnology, 2013, 8(12): 952-958. [41] BAE J, JEON D W, PARK J H, et al. High responsivity solar-blind metal-semiconductor-metal photodetector based on α-Ga2O3[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2021, 39(3): 033410. [42] KIM S, YOON Y, SEO D, et al. Alpha-phase gallium oxide-based UVC photodetector with high sensitivity and visible blindness[J]. APL Materials, 2023, 11(6): 061107. [43] QIAO G, CAI Q, MA T C, et al. Nanoplasmonically enhanced high-performance metastable phase α-Ga2O3 solar-blind photodetectors[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40283-40289. [44] MUAZZAM U U, CHAVAN P, RAGHAVAN S, et al. Optical properties of mist CVD grown α-Ga2O3[J]. IEEE Photonics Technology Letters, 2020, 32(7): 422-425. |