[1] BARTHEL A, ROBERTS J, NAPARI M, et al. Ti alloyed α-Ga2O3: route towards wide band gap engineering[J]. Micromachines, 2020, 11(12): 1128. [2] HU G C, SHAN C X, ZHANG N, et al. High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process[J]. Optics Express, 2015, 23(10): 13554-13561. [3] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11R): 8506. [4] OSHIMA T, OKUNO T, ARAI N, et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 Substrates[J]. Applied Physics Express, 2008, 1(1): 011202. [5] KONG W Y, WU G A, WANG K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731. [6] KANEKO K, SUZUKI K, ITO Y, et al. Growth characteristics of corundum-structured α-(AlxGa1-x)2O3/Ga2O3 heterostructures on sapphire substrates[J]. Journal of Crystal Growth, 2016, 436: 150-154. [7] ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3—H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722. [8] AKAIWA K, FUJITA S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2012, 51(7R): 070203. [9] MAHMOUD W E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film[J]. Solar Energy Materials and Solar Cells, 2016, 152: 65-72. [10] SUN H D, LI K H, TORRES CASTANEDO C G, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD[J]. Crystal Growth & Design, 2018, 18(4): 2370-2376. [11] KAWAHARAMURA T, NISHINAKA H, FUJITA S. Growth of crystalline zinc oxide thin films by fine-channel-mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2008, 47(6R): 4669. [12] NISHINAKA H, TAHARA D, MORIMOTO S, et al. Epitaxial growth of α-Ga2O3 thin films on a-, m-, and r-plane sapphire substrates by mist chemical vapor deposition using α-Fe2O3 buffer layers[J]. Materials Letters, 2017, 205: 28-31. [13] TAKANE H, KONISHI S, HAYASAKA Y, et al. Structural characterization of threading dislocation in α-Ga2O3 thin films on c- and m-plane sapphire substrates[J]. Journal of Applied Physics, 2024, 136(2): 025105. [14] AKAZAWA H. Formation of various phases of gallium oxide films depending on substrate planes and deposition gases[J]. Vacuum, 2016, 123: 8-16. [15] GUO D Y, ZHAO X L, ZHI Y S, et al. Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films[J]. Materials Letters, 2016, 164: 364-367. [16] WILLIAMS M S, ALONSO-ORTS M, SCHOWALTER M, et al. Growth, catalysis, and faceting of α-Ga2O3 and α-(InxGa1-x)2O3 on m-plane α-Al2O3 by molecular beam epitaxy[J]. Applied Materials, 2024, 12(1): 011120. [17] LEE S H, LEE K M, KIM Y B, et al. Sub-microsecond response time deep-ultraviolet photodetectors using α-Ga2O3 thin films grown via low-temperature atomic layer deposition[J]. Journal of Alloys and Compounds, 2019, 780: 400-407. [18] YASUOKA T, LIU L, OZAKI T, et al. The effect of HCl on the α-Ga2O3 thin films fabricated by third generation mist chemical vapor deposition[J].AIP Advanes, 2021, 11(4): 045123. [19] KIM K H, HA M T, KWON Y J, et al. Growth of 2-inch α-Ga2O3 epilayers via rear-flow-controlled mist chemical vapor deposition[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3165-Q3170. [20] PARK S Y, HA M T, KIM K H, et al. Enhanced thickness uniformity of large-scale α-Ga2O3 epilayers grown by vertical hot-wall mist chemical vapor deposition[J]. Ceramics International, 2022, 48(4): 5075-5082. [21] JEON D W, SON H, HWANG J, et al. Electrical properties, structural properties, and deep trap spectra of thin α-Ga2O3 films grown by halide vapor phase epitaxy on basal plane sapphire substrates[J]. APL Materials, 2018, 6(12): 121110. [22] LI X J, NIU P J, NING P F, et al. High surface quality heteroepitaxy α-Ga2O3 film on sapphire by mist-CVD technique[J]. Semiconductor Science and Technology, 2023, 38(7): 075012. [23] TAMBA D, KUBO O, ODA M, et al. Surface termination structure of α-Ga2O3 film grown by mist chemical vapor deposition[J]. Applied Physics Letters, 2016, 108(25): 251602. [24] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [25] NAKABAYASHI Y, YAMADA S, ITOH S, et al. Influence of precursor concentration and growth time on the surface morphology and crystallinity of α-Ga2O3 thin films fabricated by mist chemical vapor deposition[J]. Applied Physics Reviews, Journal of the Ceramic Society of Japan, 2018, 126(11): 925-930. [26] HAO J G, MA T C, CHEN X H, et al. Phase tailoring and wafer-scale uniform hetero-epitaxy of metastable-phased corundum α-Ga2O3 on sapphire[J]. Applied Surface Science, 2020, 513: 145871. [27] PETERSEN C, VOGT S, KNEIß M, et al. PLD of α-Ga2O3 on m-plane Al2O3: growth regime, growth process, and structural properties[J]. Applied Materials, 2023, 11(6): 061122. |