[1] LI C X, SANG D D, GE S H, et al. Recent excellent optoelectronic applications based on two-dimensional WS2 nanomaterials: a review[J]. Molecules, 2024, 29(14): 3341. [2] FU X Q, QIAO Z R, ZHOU H Y, et al. Defect engineering in transition metal dichalcogenide-based gas sensors[J]. Chemosensors, 2024, 12(6): 85. [3] ZHENG W, LIU X H, XIE J Y, et al. Emerging van der Waals junctions based on TMDs materials for advanced gas sensors[J]. Coordination Chemistry Reviews, 2021, 447: 214151. [4] NI Z Y, WEN H, ZHANG S Q, et al. Recent advances in layered tungsten disulfide as electrocatalyst for water splitting[J]. ChemCatChem, 2020, 12(20): 4962-4999. [5] ZHAO Y, YAN B, LIANG X X, et al. Engineering of vacancy defects in WS2 monolayer by rare-earth (Er, Tm, Lu) doping: a first-principles study[J]. Physica Status Solidi (b), 2023, 260(7): 2300055. [6] BIANCHI M G, RISPLENDI F, RE FIORENTIN M, et al. Engineering the electrical and optical properties of WS2 monolayers via defect control[J]. Advanced Science, 2024, 11(4): 2305162. [7] LUO M, SHEN Y H. Effect of strain on magnetic coupling in Ga-doped WS2 monolayer: ab initio study[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(6): 1801-1805. [8] CHEN P, CHENG C, SHEN C, et al. Band evolution of two-dimensional transition metal dichalcogenides under electric fields[J]. Applied Physics Letters, 2019, 115(8): 083104. [9] THRIPURANTHAKA M, LATE D J. Temperature dependent phonon shifts in single-layer WS2[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1158-1163. [10] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. [11] OKADA M, SAWAZAKI T, WATANABE K, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride[J]. ACS Nano, 2014, 8(8): 8273-8277. [12] RONG Y M, FAN Y, LEEN KOH A, et al. Controlling sulphur precursor addition for large single crystal domains of WS2[J]. Nanoscale, 2014, 6(20): 12096-12103. [13] ŞAR H, ÖZDEN A, YORULMAZ B, et al. A comparative device performance assesment of CVD grown MoS2 and WS2 monolayers[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(10): 8785-8792. [14] ZHOU W, ZOU X L, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 2013, 13(6): 2615-2622. [15] JARIWALA D, SANGWAN V K, LAUHON L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102-1120. [16] PAM M E, HU J P, ANG Y S, et al. High-concentration niobium-substituted WS2 basal domains with reconfigured electronic band structure for hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34862-34868. [17] 尚 源, 尤卿章, 王培杰. 化学掺杂对于单层二硫化钨光致发光的影响[J]. 光谱学与光谱分析, 2023, 43(增刊): 299-300. SHANG Y, YOU Q Z, WANG P J. Effect of chemical doping on photoluminescence of single-layer tungsten disulfide[J]. Spectroscopy and Spectral Analysis, 2023, 43(supplement): 299-300 (in Chinese). [18] 康逸清, 王 颖, 苗月圆, 等. 磷掺杂缺陷WS2纳米片诱导的高效析氢性能[J]. 无机化学学报, 2024, 40(2): 373-382. KANG Y Q, WANG Y, MIAO Y Y, et al. Efficient hydrogen evolution reaction activity induced by P-doped defective WS2 nanosheets[J]. Chinese Journal of Inorganic Chemistry, 2024, 40(2): 373-382 (in Chinese). [19] 运志强. 钒原子掺杂二硫化钨二维原子晶体的化学气相沉积法制备及性能研究[D]. 秦皇岛: 燕山大学, 2020. YUN Z Q. Preparation and properties of vanadium atom doped tungsten disulfide two-dimensional atomic crystals by chemical vapor deposition[D]. Qinhuangdao: Yanshan University, 2020 (in Chinese). [20] 曹 晟, 张 锋, 刘绍祥, 等. Er掺杂WS2的制备及光电特性研究[J]. 人工晶体学报, 2023, 52(5): 849-856. CAO S, ZHANG F, LIU S X, et al. Preparation and photoelectric properties of Er-doped WS2[J]. Journal of Synthetic Crystals, 2023, 52(5): 849-856 (in Chinese). [21] JIN Y Y, ZENG Z Y, XU Z W, et al. Synthesis and transport properties of degenerate P-type Nb-doped WS2 monolayers[J]. Chemistry of Materials, 2019, 31(9): 3534-3541. [22] TANG L, XU R Z, TAN J Y, et al. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb-doping[J]. Advanced Functional Materials, 2021, 31(5): 2006941. [23] ZHAO H Q, ZHANG G X, YAN B, et al. Substantially enhanced properties of 2D WS2 by high concentration of erbium doping against tungsten vacancy formation[J]. Research, 2022, 2022: 9840970. [24] YANG Y, FAN X L, ZHANG H. Effect of strain on the magnetic states of transition-metal atoms doped monolayer WS2[J]. Computational Materials Science, 2016, 117: 354-360. [25] 张 芳, 李 伟, 戴宪起. V, Cr, Mn掺杂对单层WS2磁性的影响[J]. 功能材料, 2016, 47(8): 8186-8190. ZHANG F, LI W, DAI X Q. Effect of V-, Cr-, Mn-doping on magnetic properties of monolayer WS2[J]. Journal of Functional Materials, 2016, 47(8): 8186-8190 (in Chinese). [26] XIE L Y, ZHANG J M. Electronic structures and magnetic properties of the transition-metal atoms (Mn, Fe, Co and Ni) doped WS2: a first-principles study[J]. Superlattices and Microstructures, 2016, 98: 148-157. [27] 陈 蓉, 王远帆, 王熠欣, 等. 过渡金属原子X(X=Mn, Tc, Re)掺杂二维WS2第一性原理研究[J]. 物理学报, 2022, 71(12): 127301. CHEN R, WANG Y F, WANG Y X, et al. First-principles study of transition metal atoms X(X = Mn, Tc, Re) doped two-dimensional WS2 materials[J]. Acta Physica Sinica, 2022, 71(12): 127301 (in Chinese). [28] LI H P, LIU S, HUANG S L, et al. Impurity-induced ferromagnetism and metallicity of WS2 monolayer[J]. Ceramics International, 2016, 42(2): 2364-2369. [29] 宁 博, 张国欣, 闫 冰, 等. Y掺杂WS2二维材料的第一性原理研究[J]. 人工晶体学报, 2022, 51(4): 643-651. NING B, ZHANG G X, YAN B, et al. First-principles study of Y-doped WS2 two-dimensional materials[J]. Journal of Synthetic Crystals, 2022, 51(4): 643-651 (in Chinese). [30] 陈得林. 单层WS2类石墨烯结构的第一性原理研究[D]. 西安: 西安电子科技大学, 2014. CHEN D L. First-principles study on single-layer WS2 graphene-like structure[D]. Xi'an: Xidian University, 2014 (in Chinese). [31] HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): 864-871. [32] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. [33] BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. [34] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [35] ZHU Y Y, ZHANG J M. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems[J]. Superlattices and Microstructures, 2018, 117: 155-162. [36] POORNIMADEVI C, PREFERENCIAL KALA C, THIRUVADIGAL D J. Tuning the electronic properties of WS2 monolayer by doping transition metals: dft approach[J]. Materials Science in Semiconductor Processing, 2023, 157: 107339. [37] ZHANG D, CHEN L, YANG M Y, et al. Interfacial characteristics of single layer semiconductor WS2 (SnS2) film and Ag film[J]. Physica B: Condensed Matter, 2023, 667: 415191. [38] CUI Z, WANG H X, YANG K Q, et al. Highly sensitive and selective defect WS2 chemical sensor for detecting HCHO toxic gases[J]. Sensors, 2024, 24(3): 762. [39] 张 芳, 李 伟, 戴宪起. Cr和Mo掺杂对WS2晶体能带结构的影响[J]. 硅酸盐学报, 2015, 43(11): 1573-1579. ZHANG F, LI W, DAI X Q. Effect of Cr-and Mo-doping on band structure of WS2 crystal[J]. Journal of the Chinese Ceramic Society, 2015, 43(11): 1573-1579 (in Chinese). [40] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138. [41] GAJDO M, HUMMER K, KRESSE G, et al. Linear optical properties in the projector-augmented wave methodology[J]. Physical Review B, 2006, 73(4): 045112. [42] JANA D, SUN C L, CHEN L C, et al. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes[J]. Progress in Materials Science, 2013, 58(5): 565-635. [43] GUO L, ZHANG S T, FENG W J, et al. A first-principles study on the structural, elastic, electronic, and optical properties of CdRh2O4[J]. Journal of Materials Science, 2014, 49(3): 1205-1214. [44] GAIKWAD A P, BETTY C A, JAGANNATH, et al. Microflowers of Pd doped ZnS for visible light photocatalytic and photoelectrochemical applications[J]. Materials Science in Semiconductor Processing, 2018, 86: 139-145. [45] VIKAL S, MEENA S, GAUTAM Y K, et al. Visible-light induced effective and sustainable remediation of nitro organics pollutants using Pd-doped ZnO nanocatalyst[J]. Scientific Reports, 2024, 14: 22430. |