[1] GRAHAM T R, NIENHUIS E T, REYNOLDS J G, et al. Sodium site occupancy and phosphate speciation in natrophosphate are invariant to changes in NaF and Na3PO4 concentration[J]. Inorganic Chemistry Frontiers, 2022, 9(19): 4864-4875. [2] ZHANG L X, LIU Y M, HAN J, et al. Al doped into Si/P sites of Na3Zr2Si2PO12 with conducted Na3PO4 impurities for enhanced ionic conductivity[J]. ACS Applied Materials & Interfaces, 2023, 15(38): 44867-44875. [3] 宋碧清, 杨 飞, 张 涛. Mg2+掺杂对焦磷酸盐Sr2P2O7∶ Eu2+紫色荧光粉的发光性能影响[J]. 当代化工研究, 2024(8): 53-55. SONG B Q, YANG F, ZHANG T. Effect of Mg2+ doping on the luminescence performance of pyrophosphate Sr2P2O7∶ Eu2+ purple fluorescent powder[J]. Modern Chemical Research, 2024(8): 53-55 (in Chinese). [4] PRASAD M, HAZRA B, SARDAR A, et al. Molecular-level insights into a tripolyphosphate and pyrophosphate templated membrane assembly[J]. Soft Matter, 2023, 19(21): 3884-3894. [5] ZHANG Y, LIU X, LIU Q Y, et al. CaZn(HPO3)2 and Ba2Zn(HPO3)3: novel alkaline-earth zincophosphites with diversified anionic frameworks[J]. DaltonTransactions, 2023, 52(31): 10918-10926. [6] LIU G X, TANG R L, MA L, et al. Pb2Cl2(HPO3)(H2O) and Pb3Br2(HPO3)2: two phosphite halides with 3D structural networks and enlarged birefringence[J]. Inorganic Chemistry, 2023, 62(3): 1069-1074. [7] 印亚静. 磷酸盐纳米材料的应用综述[J]. 江苏教育学院学报(自然科学版), 2012, 28(5): 17-22. YIN Y J. Review on the application of phosphate nanomaterials[J]. Journal of Jiangsu Institute of Education (Natural Science), 2012, 28(5): 17-22 (in Chinese). [8] DE A A SOLER-ILLIA G J, SANCHEZ C, LEBEAU B, et al. Chemical strategies of design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchichal structures[J]. ChemInform, 2003, 34(3): 200303279. [9] PATOUX S, WURM C, MORCRETTE M, et al. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3[J]. Journal of Power Sources, 2003, 119: 278-284. [10] HUANG H, YIN S C, NAZAR L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochemical and Solid-State Letters, 2001, 4(10): A170. [11] JIA M H, CHENG X Y, WHANGBO M H, et al. Second harmonic generation responses of KH2PO4: importance of K and breaking down of kleinman symmetry[J]. RSC Advances, 2020, 10(44): 26479-26485. [12] ZHANG L S, XU M X, LIU B A, et al. New annealing method to improve KD2PO4 crystal quality: learning from high temperature phase transition[J]. CrystEngComm, 2015, 17(25): 4705-4711. [13] ANIS M, HUSSAINI S S, SHKIR M, et al. Uncovering the influence of Ni2+ on optical and dielectric properties of NH4H2PO4 (ADP) crystal[J]. Optik, 2018, 157: 592-596. [14] LIU S, SHAO L Y, ZHANG X J, et al. KTiOPO4 as a novel anode material for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 754: 147-152. [15] LI Z Q, CHEN Y, ZHU P F, et al. Electronic structure and properties of RbTiOPO4∶ Ta crystals[J]. RSC Advances, 2017, 7(84): 53111-53116. [16] CHEN J, XIONG L, CHEN L, et al. Ba2NaClP2O7: unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure[J]. Journal of the American Chemical Society, 2018, 140(43): 14082-14086. [17] ZHAO S G, YANG X Y, YANG Y, et al. Non-centrosymmetric RbNaMgP2O7 with unprecedented thermo-induced enhancement of second harmonic generation[J]. Journal of the American Chemical Society, 2018, 140(5): 1592-1595. [18] YANG X Y, ZHAO S G, GENG S P, et al. Structural origin of thermally induced second harmonic generation enhancement in RbNaMgP2O7[J]. Chemistry of Materials, 2019, 31(23): 9843-9849. [19] YU H W, YOUNG J, WU H P, et al. M4Mg4(P2O7)3 (M = K, Rb): structural engineering of pyrophosphates for nonlinear optical applications[J]. Chemistry of Materials, 2017, 29(4): 1845-1855. [20] ZHAO S G, GONG P F, LUO S Y, et al. Tailored synthesis of a nonlinear optical phosphate with a short absorption edge[J]. Angewandte Chemie (International Ed), 2015, 54(14): 4217-4221. [21] GUO Z W, JIANG H M, LI H, et al. Manipulating alkali charge compensation to improve red fluorescence and thermostability in Ba5P6O20∶ Eu3+ phosphor[J]. Applied Materials Today, 2024, 37: 102095. [22] ZHAO S G, GONG P F, LUO S Y, et al. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of[PO4]3- units[J]. Journal of the American Chemical Society, 2014, 136(24): 8560-8563. [23] HU Y H, XU X, WANG R X, et al. [Sn3OF]PO4 vs.[Sn3F3]PO4: enhancing birefringence by breaking the R3 symmetry and realigning lone pairs[J]. Inorganic Chemistry Frontiers, 2024, 11(17): 5648-5656. [24] LI X B, HU C L, KONG F, et al. Ba3Sb2(PO4)4 and Cd3Sb2(PO4)4(H2O)2: two new antimonous phosphates with distinct[Sb(PO4)2]structure types and enhanced birefringence[J]. Inorganic Chemistry, 2021, 60(3): 1957-1964. [25] HUANG J S, GAO R, LU Z G, et al. Sol-gel preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 nanophosphors[J]. Optical Materials, 2010, 32(9): 857-861. [26] STRADA M, SCHWENDIMANN G. La struttura cristallina di alcuni fosfati ed arseniati di metalli trivalenti. II. arseniato e fosfato di ittrio locality: synthetic[J]. Gazzetta Chimica Italiana, 1934, 64: 662-674. [27] ZACHARIASEN W H. The crystal structure of the normal orthophosphates of barium and strontium[J]. Acta Crystallographica, 1948, 1(5): 263-265. [28] KEPPLER U. Die struktur der tieftemperaturform des bleiphosphates, Pb3(PO4)2[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 1970, 132(1/2/3/4/5/6): 228-235. [29] TĀLE I, KŪLIS P, KRONGHAUZ V. Recombination luminescence mechanisms in Ba3(PO4)2[J]. Journal of Luminescence, 1979, 20(4): 343-347. [30] 张 季, 王 迪, 张德明, 等. 正磷酸盐晶体Ba3(PO4)2和Sr3(PO4)2高温拉曼光谱研究[J]. 物理学报, 2013, 62(9): 097802. ZHANG J, WANG D, ZHANG D M, et al. Temperature-dependent Raman spectroscopic study on orthophosphates Ba3(PO4)2 and Sr3(PO4)2[J]. Acta Physica Sinica, 2013, 62(9): 097802 (in Chinese). [31] BENOIT J P, CHAPELLE J P. Raman spectrum of α and β-Pb3(PO4)2[J]. Solid State Communications, 1974, 15(3): 531-533. [32] MOONEY-SLATER R C L. Polymorphic forms of bismuth phosphate[J]. Zeitschrift Fur Kristallographie, 1962, 117(5/6): 371-385. [33] NACIRI Y, AHDOUR A, BENHSINA E, et al. Ba3(PO4)2 photocatalyst for efficient photocatalytic application[J]. Global Challenges, 2024, 8(1): 2300257. [34] RISTIĆ Z, PIOTROWSKI W, MEDIĆ M N, et al. Near-infrared luminescent lifetime-based thermometry with Mn5+-activated Sr3(PO4)2 and Ba3(PO4)2 phosphors[J]. ACS Applied Electronic Materials, 2022, 4(3): 1057-1062. [35] BABU BALLIPALLI C, RAJAVARAM R, NARESH V, et al. Synthesis and photoluminescent characteristics of Sm3+-doped Ba3(PO4)2 phosphor hierarchical architectures[J]. Materials Science and Engineering: B, 2021, 264: 114979. [36] LAZORYAK B I, DIKHTYAR Y Y, SPASSKY D A, et al. Synthesis and photoluminescence properties of Ba3(PO4)2∶Eu3+/2+ phosphors[J]. Materials Research Bulletin, 2024, 176: 112799. [37] LI S Z, BISMAYER U, DING X D, et al. Ferroelastic shear bands in Pb3(PO4)2[J]. Applied Physics Letters, 2016, 108(2): 022901. [38] BISMAYER U, MIHAILOVA B, ANGEL R. Ferroelasticity in palmierite-type(1-x)Pb3(PO4)2-xPb3(AsO4)2[J]. Journal of Physics: Condensed Matter, 2017, 29(21): 213001. [39] RAZA F, NAWAZ F, MUJAHID A, et al. Switching of enhancement and suppression in dressed Eu3+∶YPO4 and Pr3+∶YPO4[J]. Physica Scripta, 2020, 95(7): 075107. [40] SUN L J, XU Q T, LU J Y, et al. Preparation and spectroscopic characteristics of Tm∶YPO4 crystal[J]. Journal of Luminescence, 2023, 257: 119763. [41] LI P, YUAN T L, LI F, et al. Phosphate ion-driven BiPO4∶Eu phase transition[J]. The Journal of Physical Chemistry C, 2019, 123(7): 4424-4432. [42] HAQ M R, EHSAN N, NISHAT S S, et al. Comprehensive first-principles modeling of experimentally synthesized BiPO4 polymorphs[J]. The Journal of Physical Chemistry C, 2024, 128(11): 4779-4788. [43] 王云杰, 文杜林, 苏 欣.A3PO4(A=Li, Na, K, Rb, Cs)电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(1):123-131. WANG Y J, WEN D L, SU X. First-principles study on the electronic structure and optical properties of A3PO4(A=Li, Na, K, Rb, Cs)[J]. Journal of Synthetic Crystal, 2024, 53(1): 121-131 (in Chinese). [44] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [45] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048. [46] PFROMMER B G, CÔTÉ M, LOUIE S G, et al. Relaxation of crystals with the quasi-newton method[J]. Journal of Computational Physics, 1997, 131(1): 233-240. [47] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895. [48] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [49] HISCOCKS J, FRISCH M J. Gaussian 09: IOps Reference[M]. Wallingford, CT, USA: Gaussian, 2009. [50] JI H P, HUANG Z H, XIA Z G, et al. Discovery of new solid solution phosphors via cation substitution-dependent phase transition in M3(PO4)2∶ Eu2+ (M = Ca/Sr/Ba) quasi-binary sets[J]. The Journal of Physical Chemistry C, 2015, 119(4): 2038-2045. [51] ANGEL R J, BISMAYER U, MARSHALL W G. Renormalization of the phase transition in lead phosphate, Pb3(PO4)2, by high pressure: structure[J]. Journal of Physics: Condensed Matter, 2001, 13(22): 5353-5364. [52] ACHARY S N, ERRANDONEA D, MUÑOZ A, et al. Experimental and theoretical investigations on the polymorphism and metastability of BiPO4[J]. Dalton Transactions, England, 2013, 42(42): 14999-15015. [53] NI Y X, HUGHES J M, MARIANO A N. Crystal chemistry of the monazite and xenotime structures[J]. American Mineralogist, 1995, 80(1/2): 21-26. [54] HU L, MA X G, WEI Y, et al. Origin of photocatalytic activity of BiPO4: the first-principles calculations[J]. Chinese Journal of Structural Chemistry, 2017, 36(8): 1299-1306 (in Chinese). [55] LEVUSHKINA V S, SPASSKY D A, ALEKSANYAN E M, et al. Bandgap engineering of the LuxY1-xPO4 mixed crystals[J]. Journal of Luminescence, 2016, 171: 33-39. [56] 戴显英, 杨 程, 宋建军, 等. 应变Ge空穴有效质量的各向异性与各向同性[J]. 物理学报, 2012, 61(23): 237102. DAI X Y, YANG C, SONG J J, et al. Anisotropy and isotropy of hole effective mass of strained Ge[J]. Acta Physica Sinica, 2012, 61(23): 237102 (in Chinese). [57] KUMAR P, KUMAR A, DHAWAN T, et al. First principle calculation of structural, electronic, optical, elastic and thermodynamic properties of group IIA metal iodides: structure-property correlation[J]. Journal of Physics and Chemistry of Solids, 2023, 175: 111195. [58] 杨志华, 潘世烈. 新型非线性光学晶体设计及预测研究进展[J]. 人工晶体学报, 2019, 48(7): 1173-1189. YANG Z H, PAN S L. Recent research progress of design and prediction of new nonlinear optical crystals[J]. Journal of Synthetic Crystals, 2019, 48(7): 1173-1189 (in Chinese). [59] 赵文武. BiOIO3和Bi2(IO4)(IO3)3晶体电子结构和光学性质研究[J]. 人工晶体学报, 2016, 45(12): 2850-2855. ZHAO W W. Study on the electronic structure and optical properties of BiOIO3 and Bi2(IO4)(IO3)3 crystals[J]. Journal of Synthetic Crystals, 2016, 45(12): 2850-2855 (in Chinese). |