欢迎访问《人工晶体学报》官方网站,今天是 2025年8月27日 星期三 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (5): 882-889.DOI: 10.16553/j.cnki.issn1000-985x.2024.0262

• 研究论文 • 上一篇    下一篇

一步碳化法制备木棉纤维多孔碳及其对锌负极稳定性的影响

宋琪(), 蒋玲, 陈鸿明, 李辉富, 黄朔(), 骆丽杰, 陈拥军   

  1. 海南大学材料科学与工程学院,海口 570228
  • 收稿日期:2024-10-30 出版日期:2025-05-15 发布日期:2025-05-28
  • 通信作者: 黄朔,博士,讲师。E-mail: huangshuo@hainanu.edu.cn
  • 作者简介:宋琪(1999—),男,湖北省人,硕士研究生。E-mail:qi_song1999@163.com
  • 基金资助:
    海南省自然科学基金青年基金项目(223QN187);海南大学科研基金(KYQD(ZR)-22043)

Preparation of Carbonized Kapok Fiber Porous Carbons by One-Step Carbonization Process and Its Effect on the Stability of Zinc Anode

SONG Qi(), JIANG Ling, CHEN Hongming, LI Huifu, HUANG Shuo(), LUO Lijie, CHEN Yongjun   

  1. School of Materials Science and Engineering,Hainan University,Haikou 570288,China
  • Received:2024-10-30 Online:2025-05-15 Published:2025-05-28

摘要: 锌离子电容器是新兴电化学储能设备理想的选择之一,然而金属锌与水系电解液之间的热力学反应会引发腐蚀和不可控的锌枝晶生长,严重影响了锌离子电容器的库仑效率和使用寿命。为了抑制水系电解液中锌负极的不良副反应,本文利用木棉纤维生物质材料通过一步碳化法制备了具有亚纳米通道的木棉纤维多孔碳材料(KFC),并将其涂覆在锌负极表面获得Zn@KFC复合负极。KFC中的亚纳米通道可以不断地吸附溶剂化锌离子中的水分子,并促进逐步去溶剂化过程,从而增强快速且均匀的锌离子传输,进而消除水引起的锌负极腐蚀和副反应。实验结果表明,Zn@KFC对称电池在1 mA·cm-2和1 mAh·cm-2条件下展现出超过1 000 h的高循环寿命。即使在5 mA·cm-2和5 mAh·cm-2的苛刻条件下,其循环寿命依然可以超过400 h。此外,由Zn@KFC负极制备的锌离子电容器展现出超过50 000圈的循环稳定性和接近100%的库仑效率(容量保持率为98.29%)。这种通过表面改性促进高可逆性锌负极的方法为实现高性能锌离子电容器探索了一条新路径。

关键词: 锌离子电容器; 生物质材料; 多孔碳材料; 锌枝晶; 去溶剂化

Abstract: Zinc-ion capacitors are one of the promising options for emerging electrochemical energy storage devices. Nevertheless, the thermodynamic interactions between zinc metal and aqueous electrolyte lead to corrosion and uncontrolled growth of zinc dendrites, which significantly compromise the Coulombic efficiency and the cycle lifespan of zinc-ion capacitors. To mitigate the adverse side effects associated with the zinc anode in aqueous environments, this study presents the development of a kapok fiber porous carbon material (KFC) featuring sub-nano-channels, synthesized through a one-step carbonization process utilizing kapok fiber biomass. Subsequently, zinc anode coated with KFC layer, resulting in the formation of a Zn@KFC composite anode. The sub-nano-channels within the KFC facilitate the continuous adsorption of water molecules from the solvented zinc-ions, thereby promoting a gradual desolvation process that enhances the rapid and uniform transport of zinc-ions. This mechanism effectively reduces water-induced corrosion of the zinc anode and minimizes side effects. The experimental results indicate that the Zn@KFC symmetric cell demonstrates an impressive cycle life exceeding 1 000 h at 1 mA·cm-2 and 1 mAh·cm-2. Even under harsh conditions of 5 mA·cm-2 and 5 mAh·cm-2, its cycle life can still exceed 400 h. Additionally, the zinc-ion capacitor utilizing the Zn@KFC anode electrode exhibits exceeding 50 000 cycles, with a Coulombic efficiency approaching 100% (capacity retention rate of 98.29%). This approach to enhancing the reversibility of zinc anode through surface modification offers a novel strategy for the development of high-performance zinc-ion capacitors.

Key words: zinc-ion capacitor; biomass material; porous carbon material; zinc dendrite; desolvation

中图分类号: