
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (5): 873-881.DOI: 10.16553/j.cnki.issn1000-985x.2025.0008
王智超(
), 叶林峰, 阮妙, 杨超, 加雪峰, 倪玉凤, 郭永刚, 高鹏
收稿日期:2025-01-10
出版日期:2025-05-15
发布日期:2025-05-28
作者简介:王智超(1999—),男,陕西省人,工程师。E-mail:super_wzc@163.com
基金资助:
WANG Zhichao(
), YE Linfeng, RUAN Miao, YANG Chao, JIA Xuefeng, NI Yufeng, GUO Yonggang, GAO Peng
Received:2025-01-10
Online:2025-05-15
Published:2025-05-28
摘要: 为了钝化钙钛矿中存在的缺陷,提高钙钛矿薄膜质量,本文设计了一种新型的小分子2-氨基乙脒二氢溴酸盐(2AD)对钙钛矿((FA0.90MA0.05Cs0.05)Pb(I0.96Br0.04)3)薄膜进行界面修饰,使用氯苯作为反溶剂进行1.55 eV带隙的反式钙钛矿太阳电池器件制备,并结合物相、光电性能和器件性能进行实验分析。系统性的实验结果表明,2AD作为一种多功能试剂,其有效性主要体现在以下三个方面:一是将钙钛矿薄膜的晶粒尺寸从304 nm提升至321 nm,粗糙度从16.6 nm降低至15.8 nm,接触角从70.1°增加到74.3°,增加了疏水性;二是增加了钙钛矿薄膜的光生载流子寿命,抑制了钙钛矿薄膜中的非辐射复合,有利于电荷的转移;三是在大气环境中暴露30 d以上依然可以保持初始光电转换效率的90%以上。最终实现钙钛矿器件的效率从21.32%提升至23.49%,并且迟滞因子明显降低。
中图分类号:
王智超, 叶林峰, 阮妙, 杨超, 加雪峰, 倪玉凤, 郭永刚, 高鹏. 钙钛矿太阳电池中的脒基小分子界面修饰策略[J]. 人工晶体学报, 2025, 54(5): 873-881.
WANG Zhichao, YE Linfeng, RUAN Miao, YANG Chao, JIA Xuefeng, NI Yufeng, GUO Yonggang, GAO Peng. Amidine Small-Molecule Interfacial Modification Strategy in Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2025, 54(5): 873-881.
| Component of PVK | FAI | MABr | CsI | PbBr2 | PbI2 | MACl |
|---|---|---|---|---|---|---|
| Mass/mg | 232.78 | 7.98 | 19.49 | 28.21 | 675.76 | 30.159 |
表1 钙钛矿中各组分质量
Table 1 Mass of each component in perovskite
| Component of PVK | FAI | MABr | CsI | PbBr2 | PbI2 | MACl |
|---|---|---|---|---|---|---|
| Mass/mg | 232.78 | 7.98 | 19.49 | 28.21 | 675.76 | 30.159 |
图1 经过2AD处理(a)、(b)和未经过2AD处理(d)、(e)钙钛矿薄膜的SEM照片和晶粒统计(c)、(f)
Fig.1 SEM images of perovskite films with (a), (b) and without 2AD treatment (d), (e), and grain statistics (c), (f)
图5 未经过和经过2AD处理的钙钛矿薄膜的紫外可见光吸收图(a)、带隙图(b)、PL图(c)和TRPL图(d)
Fig.5 UV-Vis absorption spectra (a), band gap plots (b), PL spectra (c), and TRPL spectra (d) of perovskite films with and without 2AD treatment
图7 经过(a)和未经过(b)2AD处理的钙钛矿器件的正反扫数据与J-V曲线,以及器件稳定性(c)
Fig.7 J-V curves of perovskite devices with (a) and without (a) 2AD treatment, forward and reverse scan data, and (c) device stability
| 1 | CHEN X, JIA Z Y, CHEN Z, et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers[J]. Joule, 2020, 4(7): 1594-1606. |
| 2 | YUN H S, KWON H W, PAIK M J, et al. Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers[J]. Nature Energy, 2022, 7: 828-834. |
| 3 | CHEN W J, LI D, CHEN S S, et al. Spatial distribution recast for organic bulk heterojunctions for high-performance all-inorganic perovskite/organic integrated solar cells[J]. Advanced Energy Materials, 2020, 10(35): 2000851. |
| 4 |
LIU K K, LUO Y J, JIN Y B, et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells[J]. Nature Communications, 2022, 13(1): 4891.
DOI PMID |
| 5 | GAO Y, XU W Z, ZHANG S W, et al. Double cascading charge transfer at integrated perovskite/organic bulk heterojunctions for extended near-infrared photoresponse and enhanced photocurrent[J]. Small, 2022, 18(12): 2106083. |
| 6 | GUO Q, BAI Y M, LANG K, et al. Expanding the light harvesting of CsPbI2Br to near infrared by integrating with organic bulk heterojunction for efficient and stable solar cells[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37991-37998. |
| 7 | BI H, ZUO X, LIU B B, et al. Multifunctional organic ammonium salt-modified SnO2 nanoparticles toward efficient and stable planar perovskite solar cells[J]. Journal of Materials Chemistry A, 2021, 9(7): 3940-3951. |
| 8 | LI Y, LIU L D, ZHENG C, et al. Plant-derived l-theanine for ultraviolet/ozone resistant perovskite photovoltaics[J]. Advanced Energy Materials, 2023, 13(3): 2203190. |
| 9 | ZHU P C, GU S, LUO X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer[J]. Advanced Energy Materials, 2020, 10(3): 1903083. |
| 10 | ZENG F C, XU L, XING J H, et al. Gas molecule assisted all-inorganic dual-interface passivation strategy for high-performance perovskite solar cells[J]. Advanced Science, 2024, 11(34): 2404444. |
| 11 | WANG M, LI L, WANG J H, et al. Accelerating direct formation of α-FAPbl3 by dual-additives synergism for inverted perovskite solar cells with efficiency exceeding 26%[J]. Chemical Engineering Journal, 2025, 505: 159056. |
| 12 | ZHENG Z H, LI F M, GONG J, et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%[J]. Advanced Materials, 2022, 34(21): 2109879. |
| 13 | DONG B T, WEI M Y, LI Y H, et al. Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses[J]. Nature Energy, 2025. |
| 14 |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
DOI PMID |
| 15 | KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591. |
| 16 | YU M, FAN L, WANG L X, et al. Charged defect management for high-efficiency planar solar cells: reducing charge recombination and open-circuit voltage loss by employing donor-acceptor molecules to regulate perovskite electronic properties[J]. Chemical Engineering Journal, 2025, 505: 159035. |
| 17 | KHAN A D, BASIT A, REHMAN Q, et al. Innovative designs for semitransparent carbon-based perovskite solar cells for building-integrated applications[J]. Solar Energy, 2024, 282: 112951. |
| 18 | ALI A, TIAN R J, WANG Y H, et al. Incorporation of small molecules with polar functional group to elevate crystallinity and suppress nonradiative recombination in perovskite solar cells[J]. Solar RRL, 2024, 8(15): 2400365. |
| 19 | YANG L, FENG J S, LIU Z K, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation[J]. Advanced Materials, 2022, 34(24): e2201681. |
| 20 | KESHTMAND R, ZAMANI M M R, TAGHAVINIA N. Improving the performance of planar perovskite solar cell using NH4Cl treatment of SnO2 as electron transport layer[J]. Surfaces and Interfaces, 2022, 28: 101596. |
| 21 | ANARAKI E H, KERMANPUR A, STEIER L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 2016, 9(10): 3128-3134. |
| 22 | JIN Y B, FENG H P, LI Y J, et al. Recrystallizing sputtered NiO x for improved hole extraction in perovskite/silicon tandem solar cells[J]. Advanced Energy Materials, 2024: 2403911. |
| 23 | JARIWALA S, KUMAR R E, EPERON G E, et al. Dimethylammonium addition to halide perovskite precursor increases vertical and lateral heterogeneity[J]. ACS Energy Letters, 2022, 7(1): 204-210. |
| 24 | XU R Y, SUN Y L, DAI J F, et al. Buried interface regulation for efficient and stable perovskite minimodules[J]. Nano Energy, 2025, 133: 110406. |
| 25 | ZHANG G D, ZHENG Y F, WANG H N, et al. Shellac protects perovskite solar cell modules under real-world conditions[J]. Joule, 2024, 8(2): 496-508. |
| 26 |
KIM J Y, LEE J W, JUNG H S, et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 2020, 120(15): 7867-7918.
DOI PMID |
| 27 |
MARIANI P, MOLINA G M Á, BARICHELLO J, et al. Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests[J]. Nature Communications, 2024, 15(1): 4552.
DOI PMID |
| 28 | LIAO C, TAO R M, WANG G L, et al. Gas quenched alternating cations in the interlayer space quasi-2D (GA)(MA)5Pb5I16 perovskite for radiation tolerant single junction and stable monolithic quasi-2D perovskite-silicon tandem solar cells[J]. ACS Energy Letters, 2024, 9(11): 5310-5318. |
| 29 | AFRAJ S N, VELUSAMY A, CHEN C Y, et al. Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2022, 10(20): 11254-11267. |
| 30 | ZHANG C, FENG X Z, SONG Q L, et al. Blue-violet emission with near-unity photoluminescence quantum yield from Cu(I)-doped Rb3InCl6 single crystals[J]. The Journal of Physical Chemistry Letters, 2021, 12(33): 7928-7934. |
| 31 | YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593. |
| 32 | SU X M, LIAN L Y, ZHANG C, et al. Enhanced photoluminescence of colloidal lead-free double perovskite Cs2Ag1- x Na x InCl6 nanocrystals doped with manganese[J]. Advanced Optical Materials, 2021, 9(15): 2001866. |
| 33 | MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 2021, 598(7881): 444-450. |
| 34 |
JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13: 460-466.
DOI |
| 35 | KUNDAR M, KUMAR P, SHARMA S K, et al. Stable perovskite solar cells based on direct surface passivation employing 2D perovskites[J]. Solar RRL, 2023, 7(23): 2300572. |
| 36 | XIA J M, LIANG C, MEI S L, et al. Deep surface passivation for efficient and hydrophobic perovskite solar cells[J]. Journal of Materials Chemistry A, 2021, 9(5): 2919-2927. |
| 37 | WU Y H, WANG Q, CHEN Y T, et al. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically[J]. Energy & Environmental Science, 2022, 15(11): 4700-4709. |
| 38 | ZHANG X W, WANG Y, ZHANG K, et al. Reinforcing coverage of self-assembled monomolecular layers for inverted perovskite solar cells with efficiency of 25.70%[J]. Angewandte Chemie, 2025: e202423827. |
| [1] | 加雪峰, 阮妙, 叶林峰, 倪玉凤, 郭永刚, 高鹏. 咪唑基离子液修饰钙钛矿太阳能电池及其性能研究[J]. 人工晶体学报, 2025, 54(5): 864-872. |
| [2] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [3] | 黄渠, 姜洪喜, 周波. CaLa2(WO4)4∶Eu3+,Sm3+新型白光LED用红色荧光粉的发光性能研究[J]. 人工晶体学报, 2025, 54(1): 69-76. |
| [4] | 孙元龙, 胡子钰, 郑国宗. 大尺寸CH3NH3PbBr3晶体生长和光电性能表征[J]. 人工晶体学报, 2024, 53(8): 1313-1318. |
| [5] | 蔡晓佳, 黄家健, 孙丹丹, 梁嘉盈, 唐秀凤, 张炯. 基底温度对磁控溅射制备NiOx薄膜综合电致变色性能的影响[J]. 人工晶体学报, 2024, 53(8): 1453-1463. |
| [6] | 陈鑫鑫, 韩佳力, 潘建国. 大尺寸高质量CsCu2I3晶体生长与发光性能研究[J]. 人工晶体学报, 2024, 53(7): 1106-1111. |
| [7] | 蒋小康, 高峰, 周恒为. Eu3+掺杂Y2MgTiO6红色荧光粉的制备及发光性质研究[J]. 人工晶体学报, 2024, 53(7): 1170-1176. |
| [8] | 李丽华, 周龙杰, 刘硕, 王航, 黄金亮. SnO2(110)/FAPbBrI2(001)界面电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(7): 1239-1248. |
| [9] | 丁涛, 李晴雯, 徐玉琦, 钟敏. 硫属钙钛矿BaZrS3及其制备的研究进展和展望[J]. 人工晶体学报, 2024, 53(6): 922-929. |
| [10] | 胡正开, 杨伟斌, 熊飞兵, 郭益升, 白鑫, 李明明. Sm3+掺杂Na5Y(MoO4)4-y(WO4)y高热稳定性荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2024, 53(6): 1016-1025. |
| [11] | 王蕾蕾, 尹振华, 张蕴可, 刘磊, 陈名. 适用于太阳能电池的新型无铅四元硫碘化物优异光电性能的第一性原理研究[J]. 人工晶体学报, 2024, 53(5): 803-809. |
| [12] | 代同光, 谭新, 宋志成, 郭永刚, 袁雅静, 倪玉凤, 汪梁. TOPCon太阳电池单面沉积Poly-Si的工艺研究[J]. 人工晶体学报, 2024, 53(5): 818-823. |
| [13] | 蔡小勇, 姜洪喜. 红色荧光粉CaWO4∶Eu3+,Bi3+的制备和光学性能的研究[J]. 人工晶体学报, 2024, 53(5): 833-840. |
| [14] | 秦峰, 吴金杰, 邓宁勤, 焦志伟, 朱伟峰, 汤显强, 赵瑞. 基于溶液法制备卤化铅钙钛矿的直接型辐射探测器研究进展[J]. 人工晶体学报, 2024, 53(4): 554-571. |
| [15] | 张庆文, 单东明, 张虎, 丁然. 溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展[J]. 人工晶体学报, 2024, 53(4): 572-584. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS