| [1] |
YANG C X, LIU W, YOU Q, et al. Recent advances in light-conversion phosphors for plant growth and strategies for the modulation of photoluminescence properties[J]. Nanomaterials, 2023, 13(11): 1715.
|
| [2] |
GAO T Y, LIU Y H, LIU R H, et al. Research progress and development of near-infrared phosphors[J]. Materials, 2023, 16(8): 3145.
|
| [3] |
ZHOU C Y, FAN H, HUANG J L, et al. A novel ultra-broadband red LaGeSbO6∶Mn4+ phosphor with excellent responsiveness to phytochrome PFR for plant growth[J]. Journal of Luminescence, 2023, 257: 119767.
|
| [4] |
FANG S Q, LANG T C, CAI M S, et al. Light keys open locks of plant photoresponses: a review of phosphors for plant cultivation LEDs[J]. Journal of Alloys and Compounds, 2022, 902: 163825.
|
| [5] |
HAN Y J, WANG S, LIU H, et al. Synthesis and luminescent properties of a novel deep-red phosphor Sr2GdNbO6∶Mn4+ for indoor plant growth lighting[J]. Journal of Luminescence, 2020, 220: 116968.
|
| [6] |
FANG Y Y, ZHANG Y Y, ZHANG Y P, et al. Bi3+/Mn4+ co-activated phosphors for indoor plant growth and temperature sensing[J]. Journal of Alloys and Compounds, 2023, 934: 168049.
|
| [7] |
ADACHI S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: a review[J]. Journal of Luminescence, 2018, 202: 263-281.
|
| [8] |
王 晓, 赵豫洁, 李全安, 等. Mn4+激活氟化物红色荧光粉的制备与表面改性研究进展[J]. 功能材料, 2024, 55(6): 6044-6052.
|
|
WANG X, ZHAO Y J, LI Q A, et al. Progress in preparation and surface modification of Mn4+-activated fluoride red phosphor[J]. Journal of Functional Materials, 2024, 55(6): 6044-6052 (in Chinese).
DOI
|
| [9] |
姬海鹏. Mn4+离子光谱学基础[J]. 发光学报, 2022, 43(8): 1175-1187.
|
|
JI H P. Basic knowledge for understanding spectroscopic property of Mn4+ ion[J]. Chinese Journal of Luminescence, 2022, 43(8): 1175-1187 (in Chinese).
|
| [10] |
ADACHI S. Mn4+ vs Mn2+: a comparative study as efficient activator ions in phosphor materials: a review[J]. Journal of Luminescence, 2023, 263: 119993.
|
| [11] |
LI Z F, LI G B, LIAO F H, et al. On the synthesis and structure of LaCaGaO4[J]. Journal of Solid State Chemistry, 2003, 172(1): 59-65.
|
| [12] |
WANG P F, LI K, JIN Y C, et al. Spectral properties and high-efficiency broadband laser operation of Tm∶CaY0.9Gd0.1AlO4 crystal[J]. Optics & Laser Technology, 2023, 161: 109217.
|
| [13] |
ZHANG N, WANG H Y, YIN Y Q, et al. Cracking mechanism and spectral properties of Er, Yb∶CaGdAlO4 crystals grown by the LHPG method[J]. CrystEngComm, 2020, 22(5): 955-960.
|
| [14] |
HU Q Q, JIA Z T, TANG C, et al. The origin of coloration of CaGdAlO4 crystals and its effect on their physical properties[J]. CrystEngComm, 2017, 19(3): 537-545.
|
| [15] |
李玉强, 杨 健, 王 帅, 等. CaGdAlO4∶Yb3+/Er3+/Mn4+荧光粉上转换发光及其双探针温度传感研究[J]. 化工新型材料, 2025, 53(2): 187-192.
DOI
|
|
LI Y Q, YANG J, WANG S, et al. Upconversion luminescence and bi-probe temperature sensing characteristics of CaGdAlO4∶Yb3+/Er3+/Mn4+ phosphors[J]. New Chemical Materials, 2025, 53(2): 187-192 (in Chinese).
|
| [16] |
王立娜, 贾佩云. CaYAlO4∶Mn荧光粉的制备及其在硝基化合物检测的应用[J]. 中国陶瓷, 2023, 59(1): 39-47.
|
|
WANG L N, JIA P Y. Preparation of CaYAlO4∶Mn phosphors and its application in the detection of nitro compounds[J]. China Ceramics, 2023, 59(1): 39-47 (in Chinese).
|
| [17] |
LAN B, CAO R P, CHEN T, et al. Far-red-emitting LaSrRO4∶Mn4+ (R=Al and Ga) phosphor: synthesis and optical properties[J]. Journal of Molecular Structure, 2022, 1265: 133484.
|
| [18] |
SUN Q, WANG S Y, DEVAKUMAR B, et al. Novel far-red-emitting SrGdAlO4∶Mn4+ phosphors with excellent responsiveness to phytochrome PFR for plant growth lighting[J]. RSC Advances, 2018, 8(69): 39307-39313.
|
| [19] |
CHEN Y Y, ZHANG H H, LIU K L, et al. Luminescence performance of CaYGaO4∶Bi3+, CaYGaO4∶Mn4+ and CaYGaO4∶Bi3+/Mn4+ phosphors[J]. Journal of Alloys and Compounds, 2022, 918: 165759.
|
| [20] |
JIANG C Y, ZHANG X, WANG J, et al. Synthesis and photoluminescence properties of a novel red phosphor SrLaGaO4∶Mn4+[J]. Journal of the American Ceramic Society, 2019, 102(3): 1269-1276.
|
| [21] |
FANG W S, CHEN J Q, YANG Y, et al. Anomalous microwave dielectric behaviour induced by the orthorhombic-tetragonal phase transition in CaLaGaO4 ceramics[J]. Journal of the European Ceramic Society, 2022, 42(4): 1474-1479.
|
| [22] |
ZHANG Y L, HUANG Y D, LI M H, et al. Tuning the luminescence properties of Mn4+-activated CaYAlO4 phosphor by co-doping cations for indoor plant cultivation[J]. Journal of the American Ceramic Society, 2020, 103(8): 4373-4383.
|
| [23] |
HU J X, HUANG T H, ZHANG Y P, et al. Enhanced deep-red emission from Mn4+/Mg2+ co-doped CaGdAlO4 phosphors for plant cultivation[J]. Dalton Transactions, 2019, 48(7): 2455-2466.
|
| [24] |
FANG Y Y, ZHANG Y P, ZHANG Y P, et al. Achieving high thermal sensitivity from ratiometric CaGdAlO4∶Mn4+, Tb3+ thermometers[J]. Dalton Transactions, 2021, 50(38): 13447-13458.
|
| [25] |
SUN Q, WANG S Y, LI B, et al. Synthesis and photoluminescence properties of deep red-emitting CaGdAlO4∶Mn4+ phosphors for plant growth LEDs[J]. Journal of Luminescence, 2018, 203: 371-375.
|
| [26] |
XING Z H, LI P L, DAI D J, et al. Self-luminescence of perovskite-like LaSrGaO4 via intrinsic defects and anomalous luminescence analysis of LaSrGaO4∶Mn2+[J]. Inorganic Chemistry, 2019, 58(8): 4869-4879.
|
| [27] |
SANKARASUBRAMANIAN K, DEVAKUMAR B, ANNADURAI G, et al. Novel SrLaAlO4∶Mn4+ deep-red emitting phosphors with excellent responsiveness to phytochrome PFR for plant cultivation LEDs: synthesis, photoluminescence properties, and thermal stability[J]. RSC Advances, 2018, 8(53): 30223-30229.
|
| [28] |
ZHYDACHEVSKII Y, SUCHOCKI A, PAJĄCZKOWSKA A, et al. Spectroscopic properties of Mn4+ ions in SrLaAlO4[J]. Optical Materials, 2013, 35(9): 1664-1668.
|
| [29] |
JOU J H, LIN C C, LI T H, et al. Plant growth absorption spectrum mimicking light sources[J]. Materials, 2015, 8(8): 5265-5275.
|