
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1175-1188.DOI: 10.16553/j.cnki.issn1000-985x.2025.0083
收稿日期:2025-04-15
出版日期:2025-07-20
发布日期:2025-07-30
通信作者:
肖家文,博士,校聘教授。E-mail:xiaojw@bjut.edu.cn
作者简介:张跃(2000—),女,山东省人,硕士研究生。E-mail:3438690351@qq.com基金资助:Received:2025-04-15
Online:2025-07-20
Published:2025-07-30
摘要: 近年来,热活化延迟荧光(TADF)型闪烁体因高的激子利用率和高光产额,在辐射探测和X射线成像等领域展现出广阔的应用前景。TADF闪烁体通过反系间窜越(RISC)机制实现三线态到单线态的激发态转换,从而显著提高发光量子产率及光产额。本文综述了TADF闪烁体的最新研究进展,探讨了其闪烁机制和不同材料体系的研究进展,重点介绍了基于全无机材料、有机分子和有机-无机杂化体系(新型给受体结构、金属团簇)的TADF闪烁体的设计与性能。尽管TADF闪烁体在发光效率和稳定性方面已取得显著进展,但仍面临高能辐射下的材料降解和规模化制备等挑战。未来研究需进一步探索新的TADF闪烁体及明晰发光机理,以实现更高效、更稳定的辐射探测应用。
中图分类号:
张跃, 肖家文. 热活化延迟荧光型闪烁体研究进展[J]. 人工晶体学报, 2025, 54(7): 1175-1188.
ZHANG Yue, XIAO Jiawen. Research Progress of Thermally Activated Delayed Fluorescent Scintillators[J]. Journal of Synthetic Crystals, 2025, 54(7): 1175-1188.
图1 TADF现象的简要示意图[8]。蓝色球(+)代表空穴,黄色球(-)代表电子,S和T分别代表单线态和三线态,ISC代表系间窜越,RISC代表反系间窜越
Fig.1 A brief schematic diagram of TADF phenomenon[8]. Blue ball (+) represents holes, yellow ball (-) represents electrons, S and T represent singlet and triplet states, respectively, ISC represents inter-system crossing, and RISC represents reverse inter-system crossing
图2 用于X射线闪烁和X射线成像的各种有机分子和有机-无机TADF体系的结构式[9,15-18]
Fig.2 Structural formulas of various organic molecules and organic-inorganic TADF systems used for X-ray scintillation and X-ray imaging[9,15-18]
| Material | λPL/nm | PLQY/% | τ1,τ2,τav | Light yield/(ph·MeV-1) | Limit of detection (LOD)/(nGy·s-1) | Spatial resolution line pairs/(lp·mm-1) | Reference |
|---|---|---|---|---|---|---|---|
| Cs2ZrCl6@PDMS | 447 | 70 | 15.56 μs | 49 400 | 65 | 18 | [ |
| CsAgCl2 NCs | 600 | 73 | 1.38 µs | ~20 000 | 170.5 | 11.5 | [ |
| DMAc-TRZ | 494 | 88.9 | τ1=20.0 ns τ2=2.15 µs | 73 500±400 | 103.2±2.9 | 16.6 | [ |
| 4CzIPN | 501 | 94.4 | τ1=13.5 ns τ2=4.76 µs | 33 200±60 | 250±12 | — | |
| 4CzTPN-Bu | 553 | 80.2 | τ1=10.9 ns τ2=1.96 µs | 44 900±210 | 208±4 | — | |
| TADF-H | ~518 | 65 | τ1=5.63 ns τ2=4.53 μs | 1 892 | 438.5 | 5.1 | [ |
| TADF-Cl | ~521 | 50 | τ1=4.04 ns τ2=2.99 μs | 7 076 | 100.6 | 6.8 | [ |
| TADF-Br | ~522 | 48 | τ1=0.77 ns τ2=2.22 μs | 17 619 | 45.5 | 12.0 | [ |
| TADF-I | ~527 | 44 | τ1=0.21 ns τ2=1.42 μs | 18 115 | 45.9 | 9.4 | [ |
| [CuCl(PPh3)2(3-MePy)] | 519 | 94.95 | 28.85 μs | 5 951±135 | 338.8 | — | [ |
| [CuBr(PPh3)2(3-MePy)] | 487 | 90.24 | 51.74 μs | 21 763±1 375 | 143.9 | 6.8 | |
| [CuI(PPh3)2(3-MePy)] | 466 | 93.21 | 63.23 μs | 28 385±1 335 | 43.8 | 9.8 | |
| [CuI(PPh3)2(3,5-DmPy)] | 467 | 91.88 | 34.17 μs | 23 503±1 230 | 63.1 | 8.3 | |
| [CuI(PPh3)2(Py)] | 488 | 96.61 | 92.94 μs | 23 193±1 270 | 51.4 | 8.8 | |
| Ag2Cl2(dppb)2 | 487 | 76.47 | 19 μs | 79 970 | 59.89 | 25.0 | [ |
| Cu2I2(dppb)2 | 500 | 60.52 | 5.33 μs | 67 666 | 93.73 | — | |
| Ag6S6L6 | 530 | — | — | 17 420 | 208.65 | 16 | [ |
表1 TADF闪烁体的闪烁特性总结
Table 1 Summary of scintillation characteristics of TADF scintillators
| Material | λPL/nm | PLQY/% | τ1,τ2,τav | Light yield/(ph·MeV-1) | Limit of detection (LOD)/(nGy·s-1) | Spatial resolution line pairs/(lp·mm-1) | Reference |
|---|---|---|---|---|---|---|---|
| Cs2ZrCl6@PDMS | 447 | 70 | 15.56 μs | 49 400 | 65 | 18 | [ |
| CsAgCl2 NCs | 600 | 73 | 1.38 µs | ~20 000 | 170.5 | 11.5 | [ |
| DMAc-TRZ | 494 | 88.9 | τ1=20.0 ns τ2=2.15 µs | 73 500±400 | 103.2±2.9 | 16.6 | [ |
| 4CzIPN | 501 | 94.4 | τ1=13.5 ns τ2=4.76 µs | 33 200±60 | 250±12 | — | |
| 4CzTPN-Bu | 553 | 80.2 | τ1=10.9 ns τ2=1.96 µs | 44 900±210 | 208±4 | — | |
| TADF-H | ~518 | 65 | τ1=5.63 ns τ2=4.53 μs | 1 892 | 438.5 | 5.1 | [ |
| TADF-Cl | ~521 | 50 | τ1=4.04 ns τ2=2.99 μs | 7 076 | 100.6 | 6.8 | [ |
| TADF-Br | ~522 | 48 | τ1=0.77 ns τ2=2.22 μs | 17 619 | 45.5 | 12.0 | [ |
| TADF-I | ~527 | 44 | τ1=0.21 ns τ2=1.42 μs | 18 115 | 45.9 | 9.4 | [ |
| [CuCl(PPh3)2(3-MePy)] | 519 | 94.95 | 28.85 μs | 5 951±135 | 338.8 | — | [ |
| [CuBr(PPh3)2(3-MePy)] | 487 | 90.24 | 51.74 μs | 21 763±1 375 | 143.9 | 6.8 | |
| [CuI(PPh3)2(3-MePy)] | 466 | 93.21 | 63.23 μs | 28 385±1 335 | 43.8 | 9.8 | |
| [CuI(PPh3)2(3,5-DmPy)] | 467 | 91.88 | 34.17 μs | 23 503±1 230 | 63.1 | 8.3 | |
| [CuI(PPh3)2(Py)] | 488 | 96.61 | 92.94 μs | 23 193±1 270 | 51.4 | 8.8 | |
| Ag2Cl2(dppb)2 | 487 | 76.47 | 19 μs | 79 970 | 59.89 | 25.0 | [ |
| Cu2I2(dppb)2 | 500 | 60.52 | 5.33 μs | 67 666 | 93.73 | — | |
| Ag6S6L6 | 530 | — | — | 17 420 | 208.65 | 16 | [ |
图3 Cs2ZrCl6的光学和闪烁特性及Cs2ZrCl6@PDMS柔性X射线闪烁屏[19]。(a)Cs2ZrCl6的光致发光(PL)和激发(PLE)光谱;(b)Cs2ZrCl6的归一化PL和辐致发光(RL)光谱;(c)Cs2ZrCl6的温度依赖PL寿命和拟合曲线;(d)在一个拉伸/收缩周期内Cs2ZrCl6@PDMS柔性薄膜的电路板X射线图像。比例尺为2 cm;(e)大面积Cs2ZrCl6@PDMS柔性薄膜在254 nm紫外灯下的发光图像;金属图案(f)和鼠标(g)的X射线成像
Fig.3 Optical and scintillation properties of Cs2ZrCl6 and Cs2ZrCl6@PDMS flexible X-ray scintillation screen[19]. (a) Photoluminescence (PL) and photoluminescence excitation (PLE) spectra of Cs2ZrCl6; (b) normalized PL and radioluminescence (RL) spectra of Cs2ZrCl6; (c) temperature-dependent PL lifetime and the fitting curve of Cs2ZrCl6; (d) X-ray images of circuit board by Cs2ZrCl6@PDMS flexible films during one stretching/shrinking cycle, the scale bar is 2 cm; (e) luminescence image under 254 nm UV lamp of the large-area Cs2ZrCl6@PDMS flexible films; X-ray imaging of metal pattern (f) and mouse (g)
图4 有机闪烁体的闪烁机理、特性和X射线成像[9]。(a)有机闪烁体中X射线诱导闪烁过程的原理图;(b)X射线照射下有机闪烁体中S和T激发态的产生率;(c)检测限;(d)300 K下的荧光衰减曲线;(e)300 K的延迟荧光衰减曲线;(f)在连续X射线照射下的归一化RL强度;(g)标准X射线成像线对卡的明场(左)和X射线(右)图像;(h)芯片的明场(左)和X射线(右)图像
Fig.4 Scintillation mechanism, properties and X-ray imaging of organic scintillators[9]. (a) Schematic mechanism of the X-ray-induced scintillation process in organic scintillators; (b) production ratio of S and T excited states in an organic scintillator under X-ray irradiation; (c) detection limits; (d) luminescence decay curves at 300 K; (e) delayed fluorescence decay curves at 300 K; (f) normalized RL intensity under continuous X-ray irradiation;(g) bright field (left) and X-ray (right) images of a standard X-ray imaging line pair card; (h) bright-field (left) and X-ray (right) images of a chip
图5 TADF-H、TADF-Cl、TADF-Br和TADF-I发色团的RL和X射线成像应用[15]。(a)X射线吸收系数;(b)RL光谱;(c)MTF曲线;(d)~(e)X射线成像结果(剂量率,174 μGy/s)
Fig.5 RL and X-ray imaging applications of TADF-H, TADF-Cl, TADF-Br and TADF-I chromophores[15].(a) X-ray absorption coefficient; (b) RL spectra; (c) MTF curve; (d)~(e) X-ray imaging results (dose rate, 174 μGy/s)
图6 有机闪烁体的RL图谱和X射线成像[41]。(a)~(b)DCB、C[3]A、DCB@C[3]A、BrDCB和BrDCB@C[3]A的RL图谱;(c)X射线成像空间分辨率;(d)~(e)部分实物的X射线成像结果
Fig.6 RL spectra and X-ray imaging of organic scintillators[41]. (a)~(b) RL spectra of DCB, C[3]A, DCB@C[3]A, BrDCB, and BrDCB@C[3]A, with the inset showcasing photographs of DCB@C[3]A (a) and BrDCB@C[3]A (b) powders under X-ray irradiation; (c) spatial resolution of X-ray imaging; (d)~(e) display X-ray imaging results of some physical objects
图7 二氟硼-1,3-二苯胺基-β-二酮酸盐酯(A)、CsPbBr3(D)以及D-A n (n为A的质量百分比)纳米复合膜的光学性能[16]。(a)CsPbBr3(D)和TADF发色团(A)的吸收和发射光谱;(b)A2.0薄膜和D-A n 纳米复合膜的RL光谱;(c)紫外光和X射线激发下的IAMAX/IDMAX比值,其中IAMAX和IDMAX分别代表A和D发射最大值处的发光强度;(d)D-A2.0纳米复合膜在不同剂量率下的RL光谱
Fig.7 Optical properties of difluoroboron 1,3-diphenylamine β-diketonate (A), CsPbBr3 (D) and D-A n (D-A n, where n is the weight percentage of A) nanocomposite films[16].(a) Absorbance and emission spectra of CsPbBr3 and TADF chromophore (A); (b) RL spectra of A2.0 film and the D-A n nanocomposite films; (c) ratios of IAMAX/IDMAX under the excitation of ultraviolet light and X-rays, where IAMAX and IDMAX represent the luminescent intensity at the emission maxima of A and D, respectively; (d) RL spectra of D-A2.0 nanocomposite films at different dose rates
图8 MOF-荧光发色团复合膜的制备及其发光性能[42]。(a)MOF-荧光发色团复合膜的制备方法;(b)400 nm激发下含不同D/A比的纳米复合膜(D-A n,其中n为PMMA中TADF发色团的质量百分比)的PL光谱;(c)D-A n 纳米复合膜的辐射发光(RL)光谱
Fig.8 Preparation and luminescent properties of MOF fluorescent chromophore composite films[42]. (a) Preparation of MOF fluorescent chromophore composite film; (b) photoluminescence spectra of the nanocomposite films containing different D to A ratios (D-A n, where n is the weight percentage of the TADF chromophore in PMMA) under 400 nm excitation; (c) radioluminescence (RL) spectra of the D-A n nanocomposite films
图10 SC-Ag与SC-Cu的分子结构与闪烁性能[22]。(a)SC-Ag的分子结构;(b)SC-Cu的分子结构;(c)RL光谱;(d)归一化PL谱(实线)和激发谱(虚线)
Fig.10 Molecular structure and scintillation properties of SC-Ag and SC-Cu[22]. (a) Molecular structure of SC-Ag; (b) molecular structure of SC-Cu; (c) RL spectra; (d) normalized PL spectrum (solid line) and excitation spectrum (dash line)
| [1] | DERENZO S E, WEBER M J, BOURRET-COURCHESNE E, et al. The quest for the ideal inorganic scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1/2): 111-117. |
| [2] | VAN EIJK C W E. Inorganic scintillators in medical imaging[J]. Physics in Medicine and Biology, 2002, 47(8): R85-106. |
| [3] | UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012, 492(7428): 234-238. |
| [4] | HIRATA S, SAKAI Y M, MASUI K, et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence[J]. Nature Materials, 2015, 14(3): 330-336. |
| [5] | KAJI H, SUZUKI H, FUKUSHIMA T, et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light[J]. Nature Communications, 2015, 6: 8476. |
| [6] | YANG Z Y, MAO Z, XIE Z L, et al. Recent advances in organic thermally activated delayed fluorescence materials[J]. Chemical Society Reviews, 2017, 46(3): 915-1016. |
| [7] | YOUN LEE S, YASUDA T, NOMURA H, et al. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules[J]. Applied Physics Letters, 2012, 101(9): 093306. |
| [8] | TANG Y M, DENG M X, ZHOU Z Z, et al. Recent advances in lead-free Cs2ZrCl6 metal halide perovskites and their derivatives: from fundamentals to advanced applications[J]. Coordination Chemistry Reviews, 2024, 499: 215490. |
| [9] | MA W B, SU Y R, ZHANG Q S, et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging[J]. Nature Materials, 2022, 21(2): 210-216. |
| [10] | DONG M Y, WANG Z Y, LIN Z Y, et al. Temperature-adaptive organic scintillators for X-ray radiography[J]. Journal of the American Chemical Society, 2025, 147(5): 4069-4078. |
| [11] | HARIHARAN M, KAMAT P. Tuning excited-state energy transfer for light energy conversion: a virtual issue[J]. ACS Energy Letters, 2022, 7(6): 2114-2117. |
| [12] | HAN S Y, DENG R R, GU Q F, et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright[J]. Nature, 2020, 587(7835): 594-599. |
| [13] | MAEDA D, SHIMAKOSHI H, ABE M, et al. Syntheses and photophysical behavior of porphyrin isomer Sn(Ⅳ) complexes[J]. Inorganic Chemistry, 2009, 48(20): 9853-9860. |
| [14] | LIUS P, YANGB, CHENJ S, et al. Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals[J]. Angewandte Chemie International Edition, 2020,59(49): 21925-21929. |
| [15] | WANG J X, GUTIÉRREZ-ARZALUZ L, WANG X J, et al. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators[J]. Nature Photonics, 2022, 16(12): 869-875. |
| [16] | WANG J X, WANG X J, YIN J, et al. Perovskite-nanosheet sensitizer for highly efficient organic X-ray imaging scintillator[J]. Acs Energy Letters, 2022, 7(1): 10-16. |
| [17] | ZHANG N, QU L, DAI S H, et al. Intramolecular charge transfer enables highly-efficient X-ray luminescence in cluster scintillators[J]. Nature Communications, 2023, 14(1): 2901. |
| [18] | LIU X M, JIANG Y Y, LI F Y, et al. Thermally activated delayed fluorescent scintillators based on mononuclear copper(I) halide complexes for high-resolution X-ray imaging[J]. Advanced Optical Materials, 2023, 11(4): 2202169. |
| [19] | ZHANG F, ZHOU Y C, CHEN Z P, et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens[J]. Advanced Materials, 2022, 34(43): 2204801. |
| [20] | LIN Q, WANG Z Y, WEI Y C, et al. Thermally activated delayed fluorescence from perovskite-derivative CsAgCl2 nanocrystals for high-resolution X-ray imaging[J]. Advanced Optical Materials, 2023, 11(12): 2202976. |
| [21] | YUAN S Q, ZHANG G Z, CHEN F H, et al. Thermally activated delayed fluorescent Ag(I) complexes for highly efficient scintillation and high-resolution X-ray imaging[J]. Advanced Functional Materials, 2024, 34(33): 2400436. |
| [22] | WANG W F, XIE M J, WANG P K, et al. Thermally activated delayed fluorescence (TADF)-active coinage-metal sulfide clusters for high-resolution X-ray imaging[J]. Angewandte Chemie International Edition, 2024, 63(7): e202318026. |
| [23] | TANG Y M, PU G Q, WANG M C, et al. Brightening dark excitons in inorganic halide perovskites by local symmetry breaking[J]. Materials Today Chemistry, 2024, 41: 102307. |
| [24] | ZHANG Q S, LI B, HUANG S P, et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence[J]. Nature Photonics, 2014, 8(4): 326-332. |
| [25] | SEINO Y, INOMATA S, SASABE H, et al. High-performance green OLEDs using thermally activated delayed fluorescence with a power efficiency of over 100 lm·W-1 [J]. Advanced Materials, 2016, 28(13): 2638-2643. |
| [26] | JEON S O, LEE K H, KIM J S, et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes[J]. Nature Photonics, 2021, 15(3): 208-215. |
| [27] | WANG X, SHI H F, MA H L, et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence[J]. Nature Photonics, 2021, 15(3): 187-192. |
| [28] | TANG L L, ZAN J, PENG H, et al. X-ray excited ultralong room-temperature phosphorescence for organic afterglow scintillators[J]. Chemical Communications, 2020, 56(88): 13559-13562. |
| [29] | DONG C M, WANG X, GONG W Q, et al. Influence of isomerism on radioluminescence of purely organic phosphorescence scintillators[J]. Angewandte Chemie International Edition, 2021, 60(52): 27195-27200. |
| [30] | CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93. |
| [31] | MADAYANAD S S, HALL D, BELJONNE D, et al. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom-doped nanographenes: recent advances and prospects for organic light-emitting diodes[J]. Advanced Functional Materials, 2020, 30: 1908677. |
| [32] | CHEN H M, LIN M, ZHU Y N, et al. Halogen-bonding boosting the high performance X-ray imaging of organic scintillators[J]. Small, 2024, 20(14): 2307277. |
| [33] | WANG J X, YIN J, GUTIÉRREZ-ARZALUZ L, et al. Singlet fission-based high-resolution X-ray imaging scintillation screens[J]. Advanced Science, 2023, 10(19): 2300406. |
| [34] | ZHU H, CHEN L Y, SUN B, et al. Applications of macrocycle-based solid-state host-guest chemistry[J]. Nature Reviews Chemistry, 2023, 7(11): 768-782. |
| [35] | WU J R, WU G X, LI D X, et al. Macrocycle-based crystalline supramolecular assemblies built with intermolecular charge-transfer interactions[J]. Angewandte Chemie International Edition, 2023, 62(14): e202218142. |
| [36] | MA X K, LIU Y. Supramolecular purely organic room-temperature phosphorescence[J]. Accounts of Chemical Research, 2021, 54(17): 3403-3414. |
| [37] | WU G X, YANG Y W. Macrocycle-based fluorochromic systems[J]. Cell Reports Physical Science, 2024, 5: 101873. |
| [38] | ZHOU H Y, ZHANG D W, LI M, et al. A calix [3] acridan-based host-guest cocrystal exhibiting efficient thermally activated delayed fluorescence[J]. Angewandte Chemie International Edition, 2022, 61(15): e202117872. |
| [39] | SUN Y H, JIANG L N, LIU L J, et al. Two calix [3] phenothiazine-based amorphous pure organic room-temperature phosphorescent supramolecules mediated by guest[J]. Advanced Optical Materials, 2023, 11(10): 2300326. |
| [40] | PEREGO J, VILLA I, PEDRINI A, et al. Composite fast scintillators based on high-Z fluorescent metal-organic framework nanocrystals[J]. Nature Photonics, 2021, 15(5): 393-400. |
| [41] | ZHANG G Z, CHEN F H, DI Y M, et al. Guest-induced thermally activated delayed fluorescence organic supramolcular macrocycle scintillators for high-resolution X-ray imaging[J]. Advanced Functional Materials, 2024, 34(41): 2404123. |
| [42] | WANG J X, GUTIÉRREZ-ARZALUZ L, WANG X J, et al. Nearly 100% energy transfer at the interface of metal-organic frameworks for X-ray imaging scintillators[J]. Matter, 2022, 5(1): 253-265. |
| [43] | WANG J X, DUTTA I, YIN J, et al. Triplet-triplet energy-transfer-based transparent X-ray imaging scintillators[J]. Matter, 2023, 6(1): 217-225. |
| [44] | ALOMAR S A, WANG J X, et al. Enhancing the sensitivity and spatial imaging resolution of a hybrid X-ray imaging screen via energy transfer at the ZnS (Ag) and a thermally activated delayed fluorescence interface[J]. ACS Applied Materials & Interfaces, 2024, 16(51): 70973-70979. |
| [45] | HOFBECK T, MONKOWIUS U, YERSIN H. Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence[J]. Journal of the American Chemical Society, 2015, 137(1): 399-404. |
| [46] | BLASKIE M W, MCMILLIN D R. Photostudies of copper(I) systems. 6. Room-temperature emission and quenching studies of bis(2, 9-dimethyl-1, 10-phenanthroline)copper(I)[J]. Inorganic Chemistry, 1980, 19(11): 3519-3522. |
| [47] | GOODWIN K V, MCMILLIN D R. Anion-induced quenching of excited bis(2, 9-dimethyl-1, 10-phenanthroline)copper(1+)[J]. Inorganic Chemistry, 1987, 26(6): 875-877. |
| [48] | WALLESCH M, VOLZ D, ZINK D M, et al. Bright coppertunities: multinuclear CuI complexes with N-P ligands and their applications[J]. Chemistry-A European Journal, 2014, 20(22): 6578-6590. |
| [49] | TSUGE K, CHISHINA Y, HASHIGUCHI H, et al. Luminescent copper(I) complexes with halogenido-bridged dimeric core[J]. Coordination Chemistry Reviews, 2016, 306: 636-651. |
| [50] | YUAN P, HE T Y, ZHOU Y, et al. Hybrid thermally activated nanocluster fluorophores for X-ray scintillators[J]. ACS Energy Letters, 2023, 8(12): 5088-5097. |
| [51] | PENG Q C, SI Y B, WANG Z Y, et al. Thermally activated delayed fluorescence coinage metal cluster scintillator[J]. ACS Central Science, 2023, 9(7): 1419-1426. |
| [52] | JIANG J X, ZHAO Y F, LI Z J, et al. Copper(I) halide complex featuring blue thermally activated delayed fluorescence and aggregate induced emission for efficient X-ray scintillation and imaging[J]. Angewandte Chemie, 2025, 137(18): e202422995. |
| [53] | DOSEN M, KAWADA Y, SHIBATA S, et al. Control of emissive excited states of silver(I) halogenido coordination polymers by a solid solution approach[J]. Inorganic Chemistry, 2019, 58(13): 8419-8431. |
| [54] | WANG D H, ZHANG Y, WANG Y T, et al. Silver(I) complexes of diphenylpyridines: crystal structures, luminescence studies, theoretical insights, and biological activities[J]. ChemPlusChem, 2017, 82(2): 323-332. |
| [55] | OSAWA M, HASHIMOTO M, KAWATA I, et al. Photoluminescence properties of TADF-emitting three-coordinate silver(I) halide complexes with diphosphine ligands: a comparison study with copper(I) complexes[J]. Dalton Transactions, 2017, 46(37): 12446-12455. |
| [56] | KOBAYASHI A, KATO M. Stimuli-responsive luminescent copper(I) complexes for intelligent emissive devices free[J]. Chemistry Letters, 2017, 46(2): 154-162. |
| [57] | CARIATI E, LUCENTI E, BOTTA C, et al. Cu(I) hybrid inorganic-organic materials with intriguing stimuli responsive and optoelectronic properties[J]. Coordination Chemistry Reviews, 2016, 306: 566-614. |
| [1] | 杨帆, 张思媛, 董武佩, 王希正, 周铭, 居佃兴. 英寸级(C24H20P)2MnBr4单晶薄膜生长及高分辨率X射线成像[J]. 人工晶体学报, 2025, 54(7): 1289-1296. |
| [2] | 贾宇桢, 李政隆, 颜欣龙, 王瑞辰, 彭晨, 段韦恒, 杨伟虎, 何伟民, 宋柏君, 程瑶, 范潇宇, 杨帆. 0维钙钛矿Cs3CdBr5的晶体生长与闪烁性能研究[J]. 人工晶体学报, 2025, 54(7): 1221-1228. |
| [3] | 杨智, 顾林园, 王大伟, 徐旭辉, 宋继中. CsPbBr3钙钛矿量子点闪烁体的X射线辐照稳定性[J]. 人工晶体学报, 2025, 54(7): 1265-1271. |
| [4] | 偰航, 靳志文. 薄膜制备方法及其结晶行为对卤化物钙钛矿X射线探测器成像性能的影响研究综述[J]. 人工晶体学报, 2025, 54(7): 1100-1120. |
| [5] | 惠娟, 杨旸. 量子剪裁型镱离子掺杂钙钛矿纳米晶的合成及其在X射线多能谱成像中的新应用[J]. 人工晶体学报, 2025, 54(7): 1121-1131. |
| [6] | 严维鹏, 李斌康, 段宝军, 朱子健, 李鹏, 宋顾周, 宋岩. 不同表面状态LYSO:Ce闪烁体的发光性能研究[J]. 人工晶体学报, 2023, 52(11): 1946-1951. |
| [7] | 张梅伦, 曹振博, 杨胜赟, 张洋, 李自金, 周游, 郑京明, 贾金升. 酒石酸添加对Ce3+激活硼锗酸盐闪烁玻璃发光性能的影响[J]. 人工晶体学报, 2023, 52(10): 1867-1871. |
| [8] | 张庆礼, 孙贵花, 罗建乔, 何異, 陈迎迎, 高进云, 窦仁勤, 刘文鹏, 王小飞, 丁守军, 张德明, 孙彧. 高密度闪烁体Nd∶GdTaO4和Nd∶LuTaO4发光跃迁强度计算[J]. 人工晶体学报, 2022, 51(9-10): 1785-1793. |
| [9] | 郑嘉茜, 陈俊锋, 李翔, 卢保奇, 冯鹤. 掺杂抑制氟化钡晶体慢闪烁成分研究进展[J]. 人工晶体学报, 2022, 51(6): 951-964. |
| [10] | 颜欣龙, 石肇基, 彭晨, 王瑞, 杨帆. CsI-LiCl共晶材料的坩埚下降法生长与闪烁性能研究[J]. 人工晶体学报, 2021, 50(3): 410-415. |
| [11] | 黄丰, 郑伟, 王梦晔, 何佳庆, 程璐, 李悌涛, 徐存华, 戴叶婧, 李宇强. 氧化锌单晶生长、载流子调控与应用研究进展[J]. 人工晶体学报, 2021, 50(2): 209-243. |
| [12] | 王谦, 王京康, 成双良, 任国浩, 朱兴文, 吴云涛. 零维钙钛矿结构Cs3Cu2Br5单晶的生长和X射线探测性能[J]. 人工晶体学报, 2021, 50(10): 1919-1924. |
| [13] | 胡孟春;李忠宝;刘建;甫跃成;章法强;王文川;张建华;唐登攀;李如荣;陈力雄;黄雁. 大面积LaBr3:Ce闪烁探测器伽马灵敏度和时间响应测量[J]. 人工晶体学报, 2017, 46(7): 1215-1219. |
| [14] | 张琳;马畅;李晓东. (Gd0.95-xLuxEu0.05)2O3纳米粉体合成、透明陶瓷的制备及其荧光性能研究[J]. 人工晶体学报, 2017, 46(4): 609-615. |
| [15] | 胡孟春;李忠宝;甫跃成;刘建;唐登攀;李如荣;王文川;黄雁;陈力雄. 强辐射对Yb∶YAG超快无机闪烁探测器灵敏度影响的实验测量[J]. 人工晶体学报, 2016, 45(3): 597-603. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS