
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1121-1131.DOI: 10.16553/j.cnki.issn1000-985x.2025.0051
收稿日期:2025-03-17
出版日期:2025-07-20
发布日期:2025-07-30
通信作者:
杨旸,博士,教授。E-mail:yangyang15@zju.edu.cn
作者简介:惠娟(1987—),女,陕西省人,博士,副研究员。E-mail:juanhui@zju.edu.cn,浙江大学嘉兴研究院,副研究员。2020年获四川大学物理化学博士学位,2023年于浙江大学光电学院光学工程专业完成博士后研究工作。主要研究方向为新型闪烁体材料的设计与制备,以及在X射线成像中的应用。基金资助:Received:2025-03-17
Online:2025-07-20
Published:2025-07-30
摘要: 近年来,稀土离子掺杂钙钛矿材料凭借其优异的光电特性、可调节的带隙及独特的量子剪裁效应,在光电功能材料领域引起了研究者的广泛关注。其中,镱离子(Yb3+)掺杂钙钛矿纳米材料因其显著的光学特性,如超大的斯托克斯位移、超过100%的荧光量子产率及高效的近红外发光,在X射线成像、多能谱X射线成像、荧光型太阳能聚光器、太阳能电池和近红外电致发光器件等领域展现出巨大的应用潜力。本文聚焦于Yb3+掺杂钙钛矿纳米晶的量子剪裁特性,系统性地展开论述:全面梳理了Yb3+掺杂CsPbCl3纳米晶的合成策略、量子剪裁发光机理及其在光电领域的应用;深入探讨了量子剪裁型钙钛矿闪烁体的发展及其在X射线成像、多能谱X射线成像等前沿领域的最新突破性进展。通过分析当前面临的科学挑战与技术瓶颈,本文展望了未来的研究方向与发展趋势,为量子剪裁材料的进一步研究与应用提供了参考。
中图分类号:
惠娟, 杨旸. 量子剪裁型镱离子掺杂钙钛矿纳米晶的合成及其在X射线多能谱成像中的新应用[J]. 人工晶体学报, 2025, 54(7): 1121-1131.
HUI Juan, YANG Yang. Quantum-Cutting Ytterbium Ion (Yb3+)-Doped Perovskite Nanocrystals: Synthesis and Novel Applications in Multi-Energy X-Ray Imaging[J]. Journal of Synthetic Crystals, 2025, 54(7): 1121-1131.
图2 Yb3+掺杂CsPbCl3 NCs的量子剪裁发光机理。(a)两步能量传递机制[7];(b)一步能量传递机制,Yb3+掺杂引入浅能级缺陷态,形成电中性的Yb3+-VPb-Yb3+(VPb:Pb2+离子空位)缺陷复合物[5];(c)一步能量传递机制,形成“直角构型”Yb3+-VPb-Yb3+缺陷复合物[15];(d)Yb3+掺杂CsPbCl3 NCs的原子分辨高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和能量色散X射线光谱(EDS)分布图[18]
Fig.2 Quantum-cutting luminescence mechanism of Yb3+-doped CsPbCl3 NCs. (a) Two-step energy transfer mechanism[7]; (b) one-step energy transfer mechanism, doping with Yb3+ ions introduces shallow defect level, forming charge-neutral Yb3+-VPb-Yb3+ defect complex[5]; (c) one-step energy transfer mechanism, charge-neutral Yb3+-VPb-Yb3+ defect complex exhibiting “right-angle” configuration[15]; (d) atomic-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDS) mapping of Yb3+-doped CsPbCl3 NCs[18]
图3 量子剪裁型Yb3+掺杂CsPbCl3 NCs在光电器件中的应用。(a)在硅太阳能电池表面的集成应用[4];(b)量子剪裁型太阳能荧光聚光器件[10];(c)Yb3+掺杂CsPbCl3 NCs的电致发光光谱[9];(d)荧光转换型近红外发光二极管(pc-NIR-LED)器件[11];(e)pc-NIR-LED器件在夜视照明中的实际应用[11]
Fig.3 Applications of quantum-cutting Yb3+-doped CsPbCl3 NCs in optoelectronic devices. (a) Integrated application on the surface of a silicon solar cell[4]; (b) quantum-cutting luminescent solar concentrator device[10]; (c) electroluminescence spectrum of Yb3+-doped CsPbCl3 NCs[9]; (d) phosphor-converted near-infrared light-emitting diode (pc-NIR-LED) device[11]; (e) practical application of the pc-NIR-LED device in night vision illumination[11]
图4 量子剪裁型Yb3+掺杂CsPbCl3闪烁体的性能表征及在X射线成像中的应用。(a)Yb3+掺杂CsPbCl3粉末闪烁体的吸收光谱和发射光谱[29];(b)辐射发光光谱和光产额[29];(c)X射线成像实验[29];(d)Yb3+掺杂CsPbCl3单晶闪烁体的光产额和其他常见闪烁体的光产额[30];(e)Yb3+掺杂CsPbCl3单晶闪烁体的单像素成像示意图及相应的成像图片[30];(f)Yb3+掺杂CsPbCl3纳米晶闪烁体的辐射发光光谱[31];(g)空间分辨率测试[31];(h)基于Yb3+掺杂CsPbCl3纳米晶闪烁体薄膜的成像图片[31]
Fig.4 Performance characterization of quantum-cutting Yb3+-doped CsPbCl3 scintillators and their applications in X-ray imaging. (a) Absorption and emission spectra[29]; (b) radioluminescence (RL) spectrum and light yield of Yb3+-doped CsPbCl3 powder scintillator[29]; (c) imaging demonstration[29]; (d) light yield comparison between Yb3+-doped CsPbCl3 single crystal scintillator and other common scintillators[30]; (e) schematic of single-pixel imaging setup and corresponding imaging results versus original object for Yb3+-doped CsPbCl3 single crystal scintillator[30]; (f) RL of Yb3+-doped CsPbCl3 nanocrystal scintillator[31]; (g) spatial resolution test[31]; (h) imaging results based on Yb3+-doped CsPbCl3 nanocrystal scintillator film[31]
图5 叠层闪烁体的多能谱X射线成像。(a)传统的能量积分型X射线成像系统示意图[36];(b)基于叠层闪烁体的大面阵、多能谱、平板X射线成像系统示意图[36];(c)骨骼-肌肉测试模型结构图(左,尺寸30 mm×30 mm×3 mm)及其双能X射线成像图(右)[36];(d)基于三明治结构闪烁体对蛾类、甲虫及叶片的双能X射线成像:(i)明场图像,(ii)堆叠成像图,(iii)~(iv)分解的低能和高能成像图,(v)彩色重构图像[44]
Fig.5 Schematic of energy-integrated and multi-energy X-ray imaging system. (a) A traditional energy-integrated X-ray imaging system[36]; (b) schematic of a large-area multi-energy flat-panel X-ray imaging system based on stacked multilayer scintillators[36]; (c) structure drawing of a bone-muscle test model (left), size: 30 mm×30 mm×3 mm, and dual-energy X-ray imaging (right)[36]; (d) dual-energy X-ray images of a moth, a beetle, and a leaf based on the sandwich structure scintillator: (i) Bright-field image, (ii) stacked image, (iii)~(iv) decomposed the low- and high-energy image, (v) color reconstructed image[44]
图6 基于量子剪裁型叠层闪烁体的多能谱X射线成像[31]。传统叠层闪烁体(a)和量子剪裁型叠层闪烁体(b)的多能谱成像系统;(c)三种闪烁体材料(CsPbCl3:Yb3+、CsAgCl2和Cs3Cu2I5)的辐射发光光谱和激发光谱;(d)三层堆叠闪烁体对三种不同能量X射线的厚度-衰减效率变化曲线;(e)不同X射线管电压下三层堆叠闪烁体辐射发光强度变化;(f)物质鉴别概念验证实验示意图;(g)铁、铝和聚甲基丙烯酸甲酯三种材料的能量依赖标定曲线;(h)基于量子剪裁型叠层闪烁体的材料识别演示
Fig.6 Multi-energy X-ray imaging based on quantum-cutting stacked scintillator[31]. Schematic of a traditional stacked scintillator (a) and quantum-cutting stacked scintillator (b) X-ray imaging systems; (c) RL and PLE spectra of three scintillators (CsPbCl3∶Yb3+, CsAgCl2, and Cs3Cu2I5);(d) relationship between thickness and absorption efficiency of the three-layer stacked scintillators at different X-ray energies; (e) RL intensity of the three-layer stacked scintillator under different X-ray tube voltages; (f) schematic diagram of a concept demonstration experiment for material discrimination; (g) materials-energy dependent calibration curves for iron (Fe), aluminum (Al), and polymethyl methacrylate (PMMA); (h) demonstration of material identification utilizing quantum-cutting stacked scintillator
| [1] | PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX₃, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. |
| [2] | CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93. |
| [3] | SHAMSI J, URBAN A S, IMRAN M, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties[J]. Chemical Reviews, 2019, 119(5): 3296-3348. |
| [4] | ZHOU D L, LIU D L, PAN G C, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells[J]. Advanced Materials, 2017, 29(42): 1704149. |
| [5] | MILSTEIN T J, KROUPA D M, GAMELIN D R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals[J]. Nano Letters, 2018, 18(6): 3792-3799. |
| [6] | DEXTER D L. Possibility of luminescent quantum yields greater than unity[J]. Physical Review, 1957, 108(3): 630-633. |
| [7] | PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties[J]. Nano Letters, 2017, 17(12): 8005-8011. |
| [8] | ZHANG X T, ZHANG Y, ZHANG X Y, et al. Yb3+ and Yb3+/Er3+ doping for near-infrared emission and improved stability of CsPbCl3 nanocrystals[J]. Journal of Materials Chemistry C, 2018, 6(37): 10101-10105. |
| [9] | SHEN X Y, WANG Z Y, TANG C Y, et al. Near-infrared LEDs based on quantum cutting-activated electroluminescence of ytterbium ions[J]. Nano Letters, 2023, 23(1): 82-90. |
| [10] | LUO X, DING T, LIU X, et al. Quantum-cutting luminescent solar concentrators using ytterbium-doped perovskite nanocrystals[J]. Nano Letters, 2019, 19(1): 338-341. |
| [11] | HUANG H, LI R F, JIN S L, et al. Ytterbium-doped CsPbCl3 quantum cutters for near-infrared light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34561-34571. |
| [12] | JING Y, LOW A K Y, LIU Y, et al. Stable and highly emissive infrared Yb-doped perovskite quantum cutters engineered by machine learning[J]. Advanced Materials, 2024, 36(44): 2405973. |
| [13] | MIR W J, MAHOR Y, LOHAR A, et al. Postsynthesis doping of Mn and Yb into CsPbX3 (X=Cl, Br, or I) perovskite nanocrystals for downconversion emission[J]. Chemistry of Materials, 2018, 30(22): 8170-8178. |
| [14] | FANG X C, CHEN Z, Mandy H M L, et al. Photo-induced synthesis of ytterbium and manganese-doped CsPbCl3 nanocrystals for visible to near-infrared photoluminescence with negative thermal quenching[J]. Advanced Science, 2025, 12(4): 2408927. |
| [15] | LI X Y, DUAN S, LIU H C, et al. Mechanism for the extremely efficient sensitization of Yb3+ luminescence in CsPbCl3 nanocrystals[J]. The Journal of Physical Chemistry Letters, 2019, 10(3): 487-492. |
| [16] | ZHOU L, LIU T R, ZHENG J, et al. Dual-emission and two charge-transfer states in ytterbium-doped cesium lead halide perovskite solid nanocrystals[J]. The Journal of Physical Chemistry C, 2018, 122(47): 26825-26834. |
| [17] | MA J P, CHEN Y M, ZHANG L M, et al. Insights into the local structure of dopants, doping efficiency, and luminescence properties of lanthanide-doped CsPbCl3 perovskite nanocrystals[J]. Journal of Materials Chemistry C, 2019, 7(10): 3037-3048. |
| [18] | XU W, LIU J M, DONG B, et al. Atomic-scale imaging of ytterbium ions in lead halide perovskites[J]. Science Advances, 2023, 9(35): eadi7931. |
| [19] | ZHU W J, MA W B, SU Y R, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light, Science & Applications, 2020, 9: 112. |
| [20] | MA W B, SU Y R, ZHANG Q S, et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging[J]. Nature Materials, 2022, 21(2): 210-216. |
| [21] | JIANG T M, MA W B, ZHANG H, et al. Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications[J]. Advanced Functional Materials, 2021, 31(14): 2009973. |
| [22] | HEO J H, SHIN D H, PARK J K, et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging[J]. Advanced Materials, 2018, 30(40): 1801743. |
| [23] | ZHANG Y H, SUN R J, OU X Y, et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens[J]. ACS Nano, 2019, 13(2): 2520-2525. |
| [24] | GANDINI M, VILLA I, BERETTA M, et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators[J]. Nature Nanotechnology, 2020, 15(6): 462-468. |
| [25] | ZHANG H, YANG Z, ZHOU M, et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Advanced Materials, 2021, 33(40): 2102529. |
| [26] | MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Advanced Science, 2021, 8(15): 2003728. |
| [27] | WU X C, GUO Z, ZHU S, et al. Ultrathin, transparent, and high density perovskite scintillator film for high resolution X-ray microscopic imaging[J]. Advanced Science, 2022, 9(17): 2200831. |
| [28] | WANG B Q, PENG J L, YANG X, et al. Template assembled large-size CsPbBr3 nanocomposite films toward flexible, stable, and high-performance X-Ray scintillators[J]. Laser & Photonics Reviews, 2022, 16(7): 2100736. |
| [29] | DAGNALL K A, CONLEY A M, YOON L U, et al. Ytterbium-doped cesium lead chloride perovskite as an X-ray scintillator with high light yield[J]. ACS Omega, 2022, 7(24): 20968-20974. |
| [30] | ZI L, SONG J, WANG N, et al. X-ray quantum cutting scintillator based on CsPbCl x Br3- x ∶Yb3+ single crystals[J]. Laser & Photonics Reviews, 2023, 17(5): 2200852. |
| [31] | HUI J, RAN P, SU Y R, et al. Stacked scintillators based multispectral X-ray imaging featuring quantum-cutting perovskite scintillators with 570 nm absorption-emission shift[J]. Advanced Materials, 2025, 37(10): 2416360. |
| [32] | YANG B, YIN L X, NIU G D, et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator[J]. Advanced Materials, 2019, 31(44): 1904711. |
| [33] | LIAN L Y, ZHENG M Y, ZHANG W Z, et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons[J]. Advanced Science, 2020, 7(11): 2000195. |
| [34] | HUI J, RAN P, SU Y R, et al. High-resolution X-ray imaging based on solution-phase-synthesized Cs3Cu2I5 scintillator nanowire array[J]. The Journal of Physical Chemistry C, 2022, 126(30): 12882-12888. |
| [35] | RAN P, CHEN X Y, CHEN Z, et al. Metal halide CsCu2I3 flexible scintillator with high photodiode spectral compatibility for X-ray cone beam computed tomography (CBCT) imaging[J]. Laser & Photonics Reviews, 2024, 18(1): 2300743. |
| [36] | RAN P, YANG L R, JIANG T M, et al. Multispectral large-panel X-ray imaging enabled by stacked metal halide scintillators[J]. Advanced Materials, 2022, 34(42): 2205458. |
| [37] | SU Y R, RAN P, HUI J, et al. Organic and inorganic metal halide tandem scintillator for dual-energy flat-panel X-ray imaging[J]. The Journal of Physical Chemistry Letters, 2023, 14(26): 6179-6186. |
| [38] | RAN P, YAO Q R, HUI J, et al. Multi-energy X-ray linear-array detector enabled by the side-illuminated metal halide scintillator[J]. Laser & Photonics Reviews, 2024, 18(1): 2300587. |
| [39] | PANG J C, ZHAO S, DU X Y, et al. Vertical matrix perovskite X-ray detector for effective multi-energy discrimination[J]. Light, Science & Applications, 2022, 11(1): 105. |
| [40] | SHIKHALIEV P M. Tilted angle CZT detector for photon counting/energy weighting X-ray and CT imaging[J]. Physics in Medicine and Biology, 2006, 51(17): 4267-4287. |
| [41] | SHIKHALIEV P M, FRITZ S G, CHAPMAN J W. Photon counting multienergy X-ray imaging: effect of the characteristic X rays on detector performance[J]. Medical Physics 2009, 36 (11): 5107-5119 |
| [42] | FLOHR T, PETERSILKA M, HENNING A, et al. Photon-counting CT review[J]. Physica Medica, 2020, 79: 126-136. |
| [43] | WU W W, HU D L, AN K, et al. A high-quality photon-counting CT technique based on weight adaptive total-variation and image-spectral tensor factorization for small animals imaging[J]. IEEE Transactions on Instrumentation Measurement, 2021, 70: 3026804. |
| [44] | SHAO W Y, HE T Y, WANG J X, et al. Transparent organic and metal halide tandem scintillators for high-resolution dual-energy X-ray imaging[J]. ACS Energy Letters, 2023, 8(6): 2505-2512. |
| [45] | HU X D, LUO S H, LENG J, et al. Density-discriminating chromatic X-ray imaging based on metal halide nanocrystal scintillators[J]. Science Advances, 2023, 9(37): eadh5081. |
| [46] | HE T Y, SHAO W Y, YIN J, et al. Multi-energy X-ray imaging enabled by ΔE-E telescope scintillator[J]. Matter, 2024, 7(7): 2521-2535. |
| [1] | 陈思贤, 徐乐, 唐远之, 孙海滨, 郭学, 冯玉润, 胡强强. I-掺杂Cs3Bi2Br9晶体的生长及其光学性能调控[J]. 人工晶体学报, 2025, 54(7): 1282-1288. |
| [2] | 张飞洋, 闫锋, 娄岳, 李波江, 李杰. Co掺杂Na0.5Bi4.5Ti4O15铋层状无铅压电陶瓷制备及电学性能研究[J]. 人工晶体学报, 2025, 54(6): 1061-1067. |
| [3] | 宋志成, 张博, 张春福, 屈小勇, 倪玉凤, 高嘉庆. p型TBC电池发射极制备工艺[J]. 人工晶体学报, 2025, 54(5): 857-863. |
| [4] | 许华慨, 赖国霞, 苏坤仁, 徐祥福, 车囿达, 贺言, 陈星源. V和Cr掺杂的单层TiOCl2多铁性能第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 629-635. |
| [5] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [6] | 舒建, 李胜男, 姜义, 贾振国. Dy3+掺杂SrAl2O4:Tb3+余辉发光荧光粉余辉性能优化[J]. 人工晶体学报, 2025, 54(4): 652-662. |
| [7] | 邵梅方, 冯晋阳, 侯田江, 马晓. Ca2+/Mg2+/Zr4+不同化学计量比掺杂钆镓石榴石的性能[J]. 人工晶体学报, 2025, 54(4): 543-552. |
| [8] | 孟晓燕, 甘欣, 王春洋, 朱瑶贤, 杨流赛, 吴丽丹, 董洪霞. CaMoO4:Dy3+/Sm3+白光荧光粉的设计、合成及发光性能研究[J]. 人工晶体学报, 2025, 54(4): 663-673. |
| [9] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [10] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| [11] | 韩宇, 焦腾, 于含, 赛青林, 陈端阳, 李震, 李轶涵, 张钊, 董鑫. 衬底晶面对MOCVD同质外延生长n-Ga2O3薄膜性质的影响研究[J]. 人工晶体学报, 2025, 54(3): 438-444. |
| [12] | 孙汝军, 张晶辉, 李一帆, 郝跃, 张进成. Mg掺杂氧化镓研究进展[J]. 人工晶体学报, 2025, 54(3): 361-370. |
| [13] | 严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201. |
| [14] | 张子琦, 杨珍妮, 况思良, 魏盛龙, 徐文静, 陈端阳, 齐红基, 张洪良. MBE同质外延生长Sn掺杂β-Ga2O3(010)薄膜的电子输运性质研究[J]. 人工晶体学报, 2025, 54(2): 244-254. |
| [15] | 杨晓龙, 唐慧丽, 张超逸, 孙鹏, 黄林, 陈龙, 徐军, 刘波. 光学浮区法生长Bi掺杂β-Ga2O3单晶及其光谱性质研究[J]. 人工晶体学报, 2025, 54(2): 202-211. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS