| [1] |
WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5): 333-339.
|
| [2] |
KASAP S, FREY J B, BELEV G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors[J]. Sensors, 2011, 11(5): 5112-5157.
|
| [3] |
YANG B, PAN W C, WU H D, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 2019, 10(1): 1989.
|
| [4] |
HUANG Y M, QIAO L, JIANG Y Z, et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector[J]. Angewandte Chemie International Edition, 2019, 58(49): 17834-17842.
|
| [5] |
WEI H T, HUANG J S. Halide lead perovskites for ionizing radiation detection[J]. Nature Communications, 2019, 10(1): 1066.
|
| [6] |
SHRESTHA S, FISCHER R, MATT G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers[J]. Nature Photonics, 2017, 11(7): 436-440.
|
| [7] |
YAO M N, JIANG J Z, XIN D Y, et al. High-temperature stable FAPbBr3 single crystals for sensitive X-ray and visible light detection toward space[J]. Nano Letters, 2021, 21(9): 3947-3955.
|
| [8] |
MELONI S, MOEHL T, TRESS W, et al. Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells[J]. Nature Communications, 2016, 7: 10334.
|
| [9] |
LIN Y, BAI Y, FANG Y, ET al. Suppressed ion migration in low-dimensional perovskites[J]. ACS Energy Letters, 2017, 2(7): 1571-1572.
|
| [10] |
GAO L, YOU J, LIU S F. Superior photovoltaics/optoelectronics of two-dimensional halide perovskites[J]. Journal of Energy Chemistry, 2021, 57: 69-82.
|
| [11] |
MAO L L, WU Y L, STOUMPOS C C, et al. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10- x Cl x [J]. Journal of the American Chemical Society, 2017, 139(34): 11956-11963.
|
| [12] |
XIAO B, SUN Q, WANG F, et al. Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior[J]. Journal of Materials Chemistry A, 2021, 9(22): 13209-13219.
|
| [13] |
WANG Z, SHI Z J, LI T T, et al. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion[J]. Angewandte Chemie (International Edition), 2017, 56(5): 1190-1212.
|
| [14] |
ZHUANG J, WANG J Z, YAN F. Review on chemical stability of lead halide perovskite solar cells[J]. Nano-Micro Letters, 2023, 15(1): 84.
|
| [15] |
SUN S Q, LU M, GAO X P, et al. 0D perovskites: unique properties, synthesis, and their applications[J]. Advanced Science, 2021, 8(24): e2102689.
|
| [16] |
ZHANG M, XIN D Y, DONG S Y, et al. Methylamine-assisted preparation of ruddlesden-popper perovskites for stable detection and imaging of X-rays[J]. Advanced Optical Materials, 2022, 10(23): 2201548.
|
| [17] |
XIN D, DONG S, ZHANG M, et al. Nucleation engineering in sprayed MA3Bi2I9 films for direct-conversion X-ray detectors[J]. The Journal of Physical Chemistry Letters, 2022, 13(1): 371-377.
|
| [18] |
LIU Y C, XU Z, YANG Z, et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging[J]. Matter, 2020, 3(1): 180-196.
|
| [19] |
LI W, XIN D Y, TIE S J, et al. Zero-dimensional lead-free FA3Bi2I9 single crystals for high-performance X-ray detection[J]. The Journal of Physical Chemistry Letters, 2021, 12(7): 1778-1785.
|
| [20] |
董思吟, 帖舒婕, 袁瑞涵, 等. 低维卤化物钙钛矿直接型 X 射线探测器研究进展[J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030.
|
|
DONG S Y, TIE S J, YUAN R H, et al. Research progress of low-dimensional halide perovskite direct X-ray detectors[J]. Journal of Inorganic Materials, 2023, 38 ( 9 ) : 1017-1030.
|
| [21] |
ZHENG G Y, WU H D, DONG Z W, et al. Direct X-ray detectors made of zero-dimensional hybrid metal halide perovskite single crystals[J]. Journal of Materials Chemistry C, 2024, 12(17): 6288-6296.
|
| [22] |
ZHENG Y T, NIU T T, RAN X Q, et al. Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application[J]. Journal of Materials Chemistry A, 2019, 7(23): 13860-13872.
|
| [23] |
WANG N N, CHENG L, GE R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nature Photonics, 2016, 10(11): 699-704.
|
| [24] |
CHENG L, JIANG T, CAO Y, et al. Multiple-quantum-well perovskites for high-performance light-emitting diodes[J]. Advanced Materials, 2020, 32(15): e1904163.
|
| [25] |
MITZI D B, DIMITRAKOPOULOS C D, KOSBAR L L. Structurally tailored organic-inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors[J]. Chemistry of Materials, 2001, 13(10): 3728-3740.
|
| [26] |
DU K Z, TU Q, ZHANG X, et al. Two-dimensional lead(Ⅱ) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity[J]. Inorganic Chemistry, 2017, 56(15): 9291-9302.
|
| [27] |
KATAN C, MERCIER N, EVEN J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors[J]. Chemical Reviews, 2019, 119(5): 3140-3192.
|
| [28] |
MAO L L, WU Y L, STOUMPOS C C, et al. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites[J]. Journal of the American Chemical Society, 2017, 139(14): 5210-5215.
|
| [29] |
FU P, QUINTERO M A, VASILEIADOU E S, et al. Chemical behavior and local structure of the ruddlesden-popper and dion-jacobson alloyed Pb/Sn bromide 2D perovskites[J]. Journal of the American Chemical Society, 2023, 145(29): 15997-16014.
|