| [1] |
AHMAD H, TARIQ A, SHEHZAD A, et al. Stealth technology: methods and composite materials: a review[J]. Polymer Composites, 2019, 40(12): 4457-4472.
|
| [2] |
YENILMEZ F, MUTLU I. Production of metamaterial-based radar absorbing material for stealth technology[J]. Brazilian Journal of Physics, 2024, 54(2): 60.
|
| [3] |
ZHAO Y, JI G B. Multi-spectrum bands compatibility: new trends in stealth materials research[J]. Science China Materials, 2022, 65(11): 2936-2941.
|
| [4] |
CHAI X, ZHU D M, LIU Y, et al. Silver-modified chromium(Ⅲ) oxide as multi-band compatible stealth materials for visual/infrared stealth and radar wave transmission[J]. Composites Science and Technology, 2021, 216: 109038.
|
| [5] |
XU T T, AN Z M, ZHANG R B. Novel ceramic matrix metastructure for high-temperature radar-infrared compatible stealth: structure-function design and manufacture[J]. Composites Part A: Applied Science and Manufacturing, 2024, 179: 108030.
|
| [6] |
YU D M, WANG X Z, MA Y G, et al. Dual-dielectric Fabry-Perot film for visible-infrared compatible stealth and radiative heat dissipation[J]. Optics Communications, 2025, 574: 131173.
|
| [7] |
ZHANG B Z, ZHAO L, WANG J Y, et al. A broadband multifunctional switchable metamaterial for radar-infrared compatible stealth[J]. Optics & Laser Technology, 2025, 183: 112282.
|
| [8] |
刘 凯. 色度与红外低发射率性能兼容涂层制备及性能研究[D]. 南京: 南京航空航天大学, 2016.
|
|
LIU K. Research on the preparation and performance of coatings with compatible chromaticity and low infrared emissivity[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
|
| [9] |
WANG K Z, WANG C X, YIN Y J, et al. Modification of Al pigment with graphene for infrared/visual stealth compatible fabric coating[J]. Journal of Alloys and Compounds, 2017, 690: 741-748.
|
| [10] |
ZHANG M, LI M, YAN Z K, et al. Multifunctional Ag-ZrB2 composite film with low infrared emissivity, low visible light reflectance and hydrophobicity[J]. Applied Surface Science, 2022, 604: 154626.
|
| [11] |
MENG Z, TIAN C H, XU C L, et al. Multi-spectral functional metasurface simultaneously with visible transparency, low infrared emissivity and wideband microwave absorption[J]. Infrared Physics & Technology, 2020, 110: 103469.
|
| [12] |
LIU B, WU P H, ZHU H Y, et al. Ultra narrow dual-band perfect absorber based on a dielectric-dielectric-metal three-layer film material[J]. Micromachines, 2021, 12(12): 1552.
|
| [13] |
DING Y H, DU C L, LEI M X, et al. Optimization of highly transparent DMD-films for application in perovskite solar cell[J]. Physica Scripta, 2024, 99(8): 085529.
|
| [14] |
MIZUKOSHI K, YAMAMURA T, TOMIOKA Y, et al. Effect of TiO2 lowermost layer on crystal orientation and electrical resistivity of glass/TiO2/ZnO/Ag structure in Low-E glass[J]. Japanese Journal of Applied Physics, 2021, 60(2): 025501.
|
| [15] |
ZARNEH Z H, KADIVAR E. A comparison of physical properties of dielectric/metal/dielectric film on polyethylene terephthalate and optical glass substrates[J]. Materialwissenschaft und Werkstofftechnik, 2024, 55(3): 384-391.
|
| [16] |
KIM J, PARK C, HAHN J W. Metal-semiconductor-metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range[J]. Advanced Optical Materials, 2022, 10(6): 2101930.
|
| [17] |
LIU X J, CAI X, QIAO 1, et al. The design of ZnS/Ag/ZnS transparent conductive multilayer films[J]. Thin Solid Films, 2003, 441(1/2): 200-206.
|
| [18] |
WANG L, WANG W H, WANG L Y, et al. Flexible and transparent visible-infrared-compatible stealth film based on ITO/Ag/ITO configuration[J]. Journal of Optics, 2024, 53(4): 3947-3955.
|
| [19] |
DONG L, ZHU G S, XU H R, et al. Fabrication of nanopillar crystalline ITO thin films with high transmittance and IR reflectance by RF magnetron sputtering[J]. Materials, 2019, 12(6): 958.
|
| [20] |
XU Z C, WANG D, ZHONG M F, et al. Preparation and characterization of Mg2+-doped CaCu3Ti4O12 pigment with high NIR reflectance[J]. Ceramics International, 2020, 46(16): 25306-25312.
|
| [21] |
LIU H, XING H L, SHI R, et al. Facial synthesis of Al@MnO2 with enhanced microwave absorption and low infrared emissivity[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(21): 18791-18802.
|
| [22] |
SHI M Y, XU C, YANG Z H, et al. Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating[J]. Journal of Alloys and Compounds, 2018, 764: 314-322.
|
| [23] |
杨 涛, 陈彩明, 黄瑜佳, 等. ITO/AgNWs/ITO薄膜的制备及其性能研究[J]. 人工晶体学报, 2024, 53(7): 1150-1159.
|
|
YANG T, CHEN C M, HUANG Y J, et al. Preparation and properties of ITO/AgNWs/ITO films[J]. Journal of Synthetic Crystals, 2024, 53(7): 1150-1159 (in Chinese).
|
| [24] |
SANKOWSKA I, DOMAGALA J Z, YEFANOV O M, et al. Non-periodicity of peak-to-peak distances in X-ray diffraction spectrums from perfect superlattices[J]. Journal of Applied Physics, 2013, 113(6): 064302.
|
| [25] |
WANG K Z, JIAO P W, CHENG Y Y, et al. ITO films with different preferred orientations prepared by DC magnetron sputtering[J]. Optical Materials, 2022, 134: 113040.
|
| [26] |
DONG L, CHEN Y D, ZHU G S, et al. Highly (400) preferential ITO thin film prepared by DC sputtering with excellent conductivity and infrared reflectivity[J]. Materials Letters, 2020, 260: 126735.
|
| [27] |
JIAO P W, LI S J, ZHU G S, et al. Effect of in layer thickness on the photoelectric properties of indium tin oxide (ITO)/In/ITO multilayer films[J]. Thin Solid Films, 2024, 789: 140172.
|
| [28] |
GUILLÉN C, MONTERO J, HERRERO J. ITO/ATO bilayer transparent electrodes with enhanced light scattering, thermal stability and electrical conductance[J]. Applied Surface Science, 2016, 384: 45-50.
|
| [29] |
沈 月, 余登德, 王书明, 等. 磁控溅射沉积钌薄膜的微观结构及生长过程[J]. 贵金属, 2020, 41(3): 44-52.
|
|
SHEN Y, YU D D, WANG S M, et al. Microstructure and growth of ruthenium films deposited by magnetron sputtering[J]. Precious Metals, 2020, 41(3): 44-52 (in Chinese).
|
| [30] |
BULÍŘ J, ZIKMUND T, NOVOTNÝ M, et al. Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration[J]. Applied Physics A, 2016, 122(4): 412.
|
| [31] |
HUANG L, LIU H M, JIANG T, et al. Metal-semiconductor-metal structure enhanced quantum dot infrared photodetector for near-infrared[J]. Plasmonics, 2024, 19(5): 2653-2661.
|
| [32] |
HAN H, THEODORE N D, ALFORD T L. Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer[J]. Journal of Applied Physics, 2008, 103(1): 013708.
|
| [33] |
KIM J H, LEE J H, HEO Y W, et al. Effects of oxygen partial pressure on the preferential orientation and surface morphology of ITO films grown by RF magnetron sputtering[J]. Journal of Electroceramics, 2009, 23(2): 169-174.
|
| [34] |
FANG X, MAK C L, DAI J Y, et al. ITO/Au/ITO sandwich structure for near-infrared plasmonics[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 15743-15752.
|