
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1748-1763.DOI: 10.16553/j.cnki.issn1000-985x.2025.0170
收稿日期:2025-08-01
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
张庆礼,博士,研究员。E-mail:zql@aiofm.ac.cn
作者简介:王晓梅(1980—),女,安徽省人,硕士。E-mail:xmwang@aiofm.ac.cn
WANG Xiaomei1(
), ZHANG Qingli1,2(
)
Received:2025-08-01
Online:2025-10-20
Published:2025-11-11
摘要: 贝塞尔函数是研究波动、热传导等问题中的重要函数,其高精度计算在工程科学中具有重要地位。本文给出了采用高斯积分来计算贝塞尔函数Jν(z)、Yν(z)、Iν(z)和Kν(z)的方法。通过按正弦、余弦函数零点来进行分区数值计算,克服了三角函数振荡对积分精度的影响;通过将[0,∞]积分项变为[0,T]和[T,∞]区间积分,并在[0,T]区间处理三角函数的振荡,实现了对贝塞尔函数的高精度计算。同时,当z的实部很小时,应适当加宽[0,T]积分区间,以使高斯勒让德积分部分占绝大部分,也是提高积分计算精度的重要途径。编程验证了贝塞尔函数的高斯积分,得到的结果与Mathematica高度吻合。该方法不需要讨论级数的收敛和递推问题,对整个复数域和任意阶数的贝塞尔函数都可进行计算,具有通用性和普适性。
中图分类号:
王晓梅, 张庆礼. 贝塞尔函数的高精度高斯积分数值计算[J]. 人工晶体学报, 2025, 54(10): 1748-1763.
WANG Xiaomei, ZHANG Qingli. Gauss Quadrature Calculation of Bessel Functions with High Precision[J]. Journal of Synthetic Crystals, 2025, 54(10): 1748-1763.
| Node number | 20 | 50 | 120 |
|---|---|---|---|
Node xk Weight Ak | 66.524 416 525 615 8 1.656 456 612 499 02×10-28 | 180.698 343 709 215 6.049 567 152 238 78×10-78 | 374.984 112 834 343 3.246 565 163 435 81×10-162 |
表1 不同节点数高斯拉盖尔积分的最大节点值及积分系数
Table 1 Maximum node values and quadrature weights for Gauss-Laguerre integration with varying node counts
| Node number | 20 | 50 | 120 |
|---|---|---|---|
Node xk Weight Ak | 66.524 416 525 615 8 1.656 456 612 499 02×10-28 | 180.698 343 709 215 6.049 567 152 238 78×10-78 | 374.984 112 834 343 3.246 565 163 435 81×10-162 |
| Legendre-Q node number | Laguerre-Q node number | J1(100+100i)(1041) | J1.5(100+100i)(1041) |
|---|---|---|---|
9 10 20 100 120 | 9 9 9 9 9 | -7.549 439 837 999 92+5.440 180 930 607 1i -7.141 397 956 776 61+5.440 180 930 607 12i -7.171 374 513 424 59+5.440 180 930 607 12i -7.170 832 056 420 94+5.440 180 930 607 12i -7.170 832 056 420 94+5.440 180 930 607 12i | -9.191 973 980 129 43-1.192 011 968 727 24i -9.072 402 776 284 78-1.192 011 968 710 88i -8.894 154 608 142 5-1.192 011 968 711 13i -8.893 297 576 792 96-1.192 011 968 711 13i -8.893 297 576 792 96-1.192 011 968 711 13i |
| Computation result of mathematica | -7.170 832 056 420 98+5.440 180 930 607 079i | -8.893 297 576 792 953-1.192 011 968 711 164 2i | |
| Legendre-Q node number | Laguerre-Q node number | J1(10+10i) | J1.5(10+10i) |
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 100 100 100 100 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 | -460.637 320 536 656-2 246.626 790 780 7i -460.637 320 536 656-2 246.626 790 780 7i -460.637 320 536 656-2 246.626 790 780 7i -460.637 320 536 656-2 246.626 790 780 7i -460.637 320 536 656-2 246.626 790 780 7i -460.688 195 533 13-2 246.626 790 702 37i -460.688 195 533 13-2 246.626 790 702 37i -460.688 195 533 13-2 246.626 790 702 37i -460.688 195 533 13-2 246.626 790 702 37i -460.688 195 533 13-2 246.626 790 702 37i -460.680 913 538 353-2 246.626 790 704 06i | 1 162.515 953 818 06-1 894.744 692 620 35i 1 162.515 952 993 32-1 894.744 692 855 36i 1 162.51595315068-1 894.744 693 078 82i 1 162.51595313894-1 894.744 693 081 2i 1 162.51595313882-1 894.744 693 081 46i 1 162.42742218131-1 894.744 750 849 07i 1 162.42742135656-1 894.744 751 084 08i 1 162.42742151392-1 894.744 751 307 54i 1 162.42742150218-1 894.744 751 309 92i 1 162.42742150206-1 894.744 751 310 18i 1 162.43928177813-1 894.744 865 306 29i 1 162.439 280 953 38-1 894.744 865 541 3i 1 162.439 281 110 75-1 894.744 865 764 76i 1 162.439 281 099-1 894.744 865 767 14i 1 162.439 281 098 89-1 894.744 865 767 4i 1 162.439 697 963 15-1 894.744 874 172 5i 1 162.439 697 138 4-1 894.744 874 407 51i 1 162.439 697 295 76-1 894.744 874 630 97i 1 162.439 697 284 02-1 894.744 874 633 35i 1 162.439 697 283 91-1 894.744 874 633 61i 1 162.439 703 526 94-1 894.744 874 180 56i 1 162.439 702 702 19-1 894.744 874 415 57i 1 162.439 702 859 55-1 894.744 874 639 03i 1 162.439 702 847 81-1 894.744 874 641 41i 1 162.439 702 847 69-1 894.744 874 641 67i |
| Computation result of mathematica | -460.680 913 538 475 5-2 246.626 790 704 26i | 1 162.439 715 567 97-1 894.744 874 649 176 8i | |
| Legendre-Q node number | Laguerre-Q node number | J1(0.1+0.1i) | J1.5(0.1+0.1i) |
| 120 | 120 | 0.050 124 895 789 941 4+0.049 874 895 876 747i | 0.005 158 733 695 782 4+0.013 057 094 887 882 4i |
| Computation result of mathematica | 0.050 124 895 789 941 414+0.049 874 895 876 746 96i | 0.005 439 040 079 631 124+0.013 057 080 996 276 27i | |
表2 不同积分节点数对Jν (z)数值积分的影响
Table 2 Effect of different quadrature node number on Jν (z) numerical integral
| Legendre-Q node number | Laguerre-Q node number | J1(100+100i)(1041) | J1.5(100+100i)(1041) |
|---|---|---|---|
9 10 20 100 120 | 9 9 9 9 9 | -7.549 439 837 999 92+5.440 180 930 607 1i -7.141 397 956 776 61+5.440 180 930 607 12i -7.171 374 513 424 59+5.440 180 930 607 12i -7.170 832 056 420 94+5.440 180 930 607 12i -7.170 832 056 420 94+5.440 180 930 607 12i | -9.191 973 980 129 43-1.192 011 968 727 24i -9.072 402 776 284 78-1.192 011 968 710 88i -8.894 154 608 142 5-1.192 011 968 711 13i -8.893 297 576 792 96-1.192 011 968 711 13i -8.893 297 576 792 96-1.192 011 968 711 13i |
| Computation result of mathematica | -7.170 832 056 420 98+5.440 180 930 607 079i | -8.893 297 576 792 953-1.192 011 968 711 164 2i | |
| Legendre-Q node number | Laguerre-Q node number | J1(10+10i) | J1.5(10+10i) |
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 100 100 100 100 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 | -460.637 320 536 656-2 246.626 790 780 7i -460.637 320 536 656-2 246.626 790 780 7i -460.637 320 536 656-2 246.626 790 780 7i -460.637 320 536 656-2 246.626 790 780 7i -460.637 320 536 656-2 246.626 790 780 7i -460.688 195 533 13-2 246.626 790 702 37i -460.688 195 533 13-2 246.626 790 702 37i -460.688 195 533 13-2 246.626 790 702 37i -460.688 195 533 13-2 246.626 790 702 37i -460.688 195 533 13-2 246.626 790 702 37i -460.680 913 538 353-2 246.626 790 704 06i | 1 162.515 953 818 06-1 894.744 692 620 35i 1 162.515 952 993 32-1 894.744 692 855 36i 1 162.51595315068-1 894.744 693 078 82i 1 162.51595313894-1 894.744 693 081 2i 1 162.51595313882-1 894.744 693 081 46i 1 162.42742218131-1 894.744 750 849 07i 1 162.42742135656-1 894.744 751 084 08i 1 162.42742151392-1 894.744 751 307 54i 1 162.42742150218-1 894.744 751 309 92i 1 162.42742150206-1 894.744 751 310 18i 1 162.43928177813-1 894.744 865 306 29i 1 162.439 280 953 38-1 894.744 865 541 3i 1 162.439 281 110 75-1 894.744 865 764 76i 1 162.439 281 099-1 894.744 865 767 14i 1 162.439 281 098 89-1 894.744 865 767 4i 1 162.439 697 963 15-1 894.744 874 172 5i 1 162.439 697 138 4-1 894.744 874 407 51i 1 162.439 697 295 76-1 894.744 874 630 97i 1 162.439 697 284 02-1 894.744 874 633 35i 1 162.439 697 283 91-1 894.744 874 633 61i 1 162.439 703 526 94-1 894.744 874 180 56i 1 162.439 702 702 19-1 894.744 874 415 57i 1 162.439 702 859 55-1 894.744 874 639 03i 1 162.439 702 847 81-1 894.744 874 641 41i 1 162.439 702 847 69-1 894.744 874 641 67i |
| Computation result of mathematica | -460.680 913 538 475 5-2 246.626 790 704 26i | 1 162.439 715 567 97-1 894.744 874 649 176 8i | |
| Legendre-Q node number | Laguerre-Q node number | J1(0.1+0.1i) | J1.5(0.1+0.1i) |
| 120 | 120 | 0.050 124 895 789 941 4+0.049 874 895 876 747i | 0.005 158 733 695 782 4+0.013 057 094 887 882 4i |
| Computation result of mathematica | 0.050 124 895 789 941 414+0.049 874 895 876 746 96i | 0.005 439 040 079 631 124+0.013 057 080 996 276 27i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(100+100i)(1041) | Y1.5(100+100i)(1041) |
|---|---|---|---|
9 10 20 100 120 | 9 9 9 9 9 | -5.494 049 391 957 6-7.170 832 056 420 71i -5.680 027 575 509 4-7.170 832 056 420 951i -5.440 735 471 464 44-7.170 832 056 420 941i -5.440 180 930 607 12-7.170 832 056 420 941i -5.440 180 930 607 12-7.170 832 056 420 941i | 1.466 425 329 282 67-8.893 297 576 797 191i 1.007 233 544 057 47-8.893 297 576 792 781i 1.192 147 067 288 99-8.893 297 576 792 951i 1.192 011 968 711 13-8.893 297 576 792 961i 1.192 011 968 711 13-8.893 297 576 792 961i |
| Computation result of mathematica | -5.440 180 930 607 079-7.170 832 056 420 981i | 1.192 011 968 711 133 5-8.893 297 576 792 957 1i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(10+101i) | Y1.5(10+10i) |
9 9 9 9 9 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 | 2 246.663 381 809 01-460.680 917 967 915 1i 2 246.663 383 157 31-460.680 919 653 511i 2 246.663 383 408 55-460.680 918 991 497 1i 2 246.663 383 450 12-460.680 919 019 703 1i 2 246.663 383 452 33-460.680 919 019 186 1i 2 246.626 797 243 6-460.680 917 906 846 1i 2 246.626 798 591 9-460.680 919 592 441i 2 246.626 798 843 13-460.680 918 930 427 1i 2 246.626 798 884 7-460.680 918 958 634 1i 2 246.626 798 886 92-460.680 918 958 117 1i | 1 894.709 726 878 95+1 162.439 707 672 091i 1 894.709 729 473 66+1 162.439 704 493 1i 1 894.709 729 921 54+1 162.439 705 753 421i 1 894.709 730 004 43+1 162.439 705 704 931i 1 894.709 730 008 7+1 162.439 705 706 561i 1 894.744 873 830 04+1 162.439 707 674 881i 1 894.744 876 424 75+1 162.439 704 495 791i 1 894.744 876 872 63+1 162.439 705 756 211i 1 894.744 876 955 52+1 162.439 705 707 721i 1 894.744 876 959 79+1 162.439 705 709 351i |
| Computation result of mathematica | 2 246.626 798 886 549-460.680 918 958 177 761i | 1 894.744 876 958 621 3+1 162.439 705 709 301 31i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(0.1+0.1i) | Y1.5(0.1+0.11i) |
9 9 9 9 9 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 | -3.290 364 275 768 92+3.126 555 849 367 51i -3.290 132 686 452 44+3.126 515 433 829 471i -3.290 166 989 940 16+3.126 554 731 866 011i -3.290 167 751 964 49+3.126 558 478 730 451i -3.290 167 907 297 93+3.126 558 330 296 141i -3.290 364 314 688 19+3.126 555 903 447 091i -3.290 132 725 371 71+3.126 515 487 909 051i -3.290 167 028 859 43+3.126 554 785 945 61i -3.290 167 790 883 76+3.126 558 532 810 041i -3.290 167 946 217 2+3.126 558 384 375 721i | -5.883 049 522 022 79+13.803 731 426 815 51i -5.879 545 897 352 98+13.803 306 498 901 21i -5.880 127 458 317+13.803 850 657 715 11i -5.880 150 519 065 48+13.803 911 207 657 51i -5.880 152 791 487 16+13.803 907 902 086 31i -5.883 050 110 872 68+13.803 731 517 282 71i -5.879 546 486 202 86+13.803 306 589 368 41i -5.880 128 047 166 89+13.803 850 748 182 31i -5.880 151 107 915 37+13.803 911 298 124 71i -5.880 153 380 337 04+13.803 907 992 553 51i |
| Computation result of mathematica | -3.290 167 902 511 65+ 3.126 558 420 426 83i | -5.880 152 711 849 398+13.803 908 839 184 65i | |
表3 不同积分节点数对Yν (z)数值积分的影响
Table 3 Effect of different quadrature node number on Yν (z) numerical integral
| Legendre-Q node number | Laguerre-Q node number | Y1(100+100i)(1041) | Y1.5(100+100i)(1041) |
|---|---|---|---|
9 10 20 100 120 | 9 9 9 9 9 | -5.494 049 391 957 6-7.170 832 056 420 71i -5.680 027 575 509 4-7.170 832 056 420 951i -5.440 735 471 464 44-7.170 832 056 420 941i -5.440 180 930 607 12-7.170 832 056 420 941i -5.440 180 930 607 12-7.170 832 056 420 941i | 1.466 425 329 282 67-8.893 297 576 797 191i 1.007 233 544 057 47-8.893 297 576 792 781i 1.192 147 067 288 99-8.893 297 576 792 951i 1.192 011 968 711 13-8.893 297 576 792 961i 1.192 011 968 711 13-8.893 297 576 792 961i |
| Computation result of mathematica | -5.440 180 930 607 079-7.170 832 056 420 981i | 1.192 011 968 711 133 5-8.893 297 576 792 957 1i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(10+101i) | Y1.5(10+10i) |
9 9 9 9 9 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 | 2 246.663 381 809 01-460.680 917 967 915 1i 2 246.663 383 157 31-460.680 919 653 511i 2 246.663 383 408 55-460.680 918 991 497 1i 2 246.663 383 450 12-460.680 919 019 703 1i 2 246.663 383 452 33-460.680 919 019 186 1i 2 246.626 797 243 6-460.680 917 906 846 1i 2 246.626 798 591 9-460.680 919 592 441i 2 246.626 798 843 13-460.680 918 930 427 1i 2 246.626 798 884 7-460.680 918 958 634 1i 2 246.626 798 886 92-460.680 918 958 117 1i | 1 894.709 726 878 95+1 162.439 707 672 091i 1 894.709 729 473 66+1 162.439 704 493 1i 1 894.709 729 921 54+1 162.439 705 753 421i 1 894.709 730 004 43+1 162.439 705 704 931i 1 894.709 730 008 7+1 162.439 705 706 561i 1 894.744 873 830 04+1 162.439 707 674 881i 1 894.744 876 424 75+1 162.439 704 495 791i 1 894.744 876 872 63+1 162.439 705 756 211i 1 894.744 876 955 52+1 162.439 705 707 721i 1 894.744 876 959 79+1 162.439 705 709 351i |
| Computation result of mathematica | 2 246.626 798 886 549-460.680 918 958 177 761i | 1 894.744 876 958 621 3+1 162.439 705 709 301 31i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(0.1+0.1i) | Y1.5(0.1+0.11i) |
9 9 9 9 9 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 | -3.290 364 275 768 92+3.126 555 849 367 51i -3.290 132 686 452 44+3.126 515 433 829 471i -3.290 166 989 940 16+3.126 554 731 866 011i -3.290 167 751 964 49+3.126 558 478 730 451i -3.290 167 907 297 93+3.126 558 330 296 141i -3.290 364 314 688 19+3.126 555 903 447 091i -3.290 132 725 371 71+3.126 515 487 909 051i -3.290 167 028 859 43+3.126 554 785 945 61i -3.290 167 790 883 76+3.126 558 532 810 041i -3.290 167 946 217 2+3.126 558 384 375 721i | -5.883 049 522 022 79+13.803 731 426 815 51i -5.879 545 897 352 98+13.803 306 498 901 21i -5.880 127 458 317+13.803 850 657 715 11i -5.880 150 519 065 48+13.803 911 207 657 51i -5.880 152 791 487 16+13.803 907 902 086 31i -5.883 050 110 872 68+13.803 731 517 282 71i -5.879 546 486 202 86+13.803 306 589 368 41i -5.880 128 047 166 89+13.803 850 748 182 31i -5.880 151 107 915 37+13.803 911 298 124 71i -5.880 153 380 337 04+13.803 907 992 553 51i |
| Computation result of mathematica | -3.290 167 902 511 65+ 3.126 558 420 426 83i | -5.880 152 711 849 398+13.803 908 839 184 65i | |
| Legendre-Q node number | Laguerre-Q node number | I1(100+100i)(1041) | I1.5(100+100i)(1041) |
|---|---|---|---|
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 | 9 20 50 100 120 9 20 50 10 12 9 20 50 10 12 9 | 5.649 022 907 841 15-7.170 832 056 280 8i 5.649 022 907 841 15-7.170 832 056 280 8i 5.649 022 907 841 15-7.170 832 056 280 8i 5.649 022 907 841 15-7.170 832 056 280 8i 5.649 022 907 841 15-7.170 832 056 280 8i 5.838 268 811 088 22-7.170 832 056 428 27i 5.838 268 811 088 22-7.170 832 056 428 27i 5.838 268 811 088 22-7.170 832 056 428 27i 5.838 268 811 088 22-7.170 832 056 428 27i 5.838 268 811 088 22-7.170 832 056 428 27i 5.441 223 716 693 09-7.170 832 056 420 94i 5.441 223 716 693 09-7.170 832 056 420 94i 5.441 223 716 693 09-7.170 832 056 420 94i 5.441 223 716 693 09-7.170 832 056 420 94i 5.441 223 716 693 09-7.170 832 056 420 94i 5.440 180 930 607 12-7.170 832 056 420 94i | 5.329 209 512 340 45-7.131 390 769 869 88i 5.329 209 512 340 45-7.131 390 769 869 88i 5.329 209 512 340 45-7.131 390 769 869 88i 5.329 209 512 340 45-7.131 390 769 869 88i 5.329 209 512 340 45-7.131 390 769 869 88i 5.415 393 481 911 21-7.131 390 769 998 54i 5.415 393 481 911 21-7.131 390 769 998 54i 5.415 393 481 911 21-7.131 390 769 998 54i 5.415 393 481 911 21-7.131 390 769 998 54i 5.415 393 481 911 21-7.131 390 769 998 54i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 631 277 329 02-7.131 390 769 991 36i |
| Computation result of mathematica | 5.440 180 930 607 121-7.170 832 056 420 942i | 5.445 631 277 329 021-7.131 390 769 991 36i | |
| Legendre-Q node number | Laguerre-Q node number | I1(10+10i) | I1.5(10+10i) |
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 100 100 100 100 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 | -2 246.672 213 980 02-460.680 913 539 618i -2 246.672 213 980 02-460.680 913 539 618i -2 246.672 213 980 02-460.680 913 539 618i -2 246.672 213 980 02-460.680 913 539 618i -2 246.672 213 980 02-460.680 913 539 618i -2 246.621 363 034 26-460.680 913 538 33i -2 246.621 363 034 26-460.680 913 538 33i -2 246.621 363 034 26-460.680 913 538 33i -2 246.621 363 034 26-460.680 913 538 33i -2 246.621 363 034 26-460.680 913 538 33i -2 246.626 790 704 06-460.680 913 538 353i | -2 161.755 302 903 74-517.817 943 622 61i -2 161.755 302 528 74-517.817 943 880 782i -2 161.755 302 625 35-517.817 943 880 709i -2 161.755 302 621 54-517.817 943 886 25i -2 161.755 302 621 9-517.817 943 886 483i -2 161.757 380 008 44-517.817 943 620 405i -2 161.757 379 633 44-517.817 943 878 577i -2 161.757 379 730 05-517.817 943 878 504i -2 161.757 379 726 25-517.817 943 884 045i -2 161.757 379 726 6-517.817 943 884 279i -2 161.755 955 363 47-517.817 943 620 445i -2 161.755 954 988 47-517.817 943 878 617i -2 161.755 955 085 08-517.817 943 878 545i -2 161.755 955 081 27-517.817 943 884 086i -2 161.755 955 081 63-517.817 943 884 319i -2 161.755 955 363 46-517.817 943 620 445i -2 161.755 954 988 46-517.817 943 878 617i -2 161.755 955 085 07-517.817 943 878 545i -2 161.755 955 081 27-517.817 943 884 086i -2 161.755 955 081 62-517.817 943 884 319i -2 161.755 955 363 46-517.817 943 620 445i -2 161.755 954 988 46-517.817 943 878 617i -2 161.755 955 085 07-517.817 943 878 545i -2 161.755 955 081 27-517.817 943 884 086i -2 161.755 955 081 62-517.817 943 884 319i |
| Computation result of mathematica | -2 246.626 790 704 259 7-460.680 913 538 474 8i | -2 161.755 955 081 561-517.817 943 884 214 4i | |
| Legendre-Q node number | Laguerre-Q node number | I1(0.1+0.1i) | I1.5(0.1+0.1i) |
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 100 100 100 100 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 | 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 8767 469+0.050 124 895 789 941 4i | 0.005 386 592 599 051 6+0.013 079 058 609 438 9i 0.005 386 813 406 221 88+0.013 078 740 823 150 8i 0.005 386 766 946 629 17+0.013 078 732 154 675 2i 0.005 386 768 346 151 25+0.013 078 732 731 394i 0.005 386 768 390 667 75+0.013 078 732 765 263 6i 0.005 386 592 599 513 1+0.013 079 058 509 496 4i 0.005 386 813 406 683 37+0.013 078 740 723 208 3i 0.005 386 766 947 090 66+0.013 078 732 054 732 7i 0.005 386 768 346 612 74+0.013 078 732 631 451 5i 0.005 386 768 391 129 24+0.013 078 732 665 321 1i 0.005 386 592 599 570 33+0.013 079 058 498 911 2i 0.005 386 813 406 740 6+0.013 078 740 712 623 2i 0.005 386 766 947 147 9+0.013 078 732 044 147 5i 0.005 386 768 346 669 97+0.013 078 732 620 866 3i 0.005 386 768 391 186 48+0.013 078 732 654 735 9i 0.005 386 592 599 570 55+0.013 079 058 498 911 2i 0.005 386 813 406 740 82+0.013 078 740 712 623 1i 0.005 386 766 947 148 12+0.013 078 732 044 147 5i 0.005 386 768 346 670 2+0.013 078 732 620 866 3i 0.005 386 768 391 186 7+0.013 078 732 654 735 9i 0.005 386 592 599 570 55+0.013 079 058 498 911 2i 0.005 386 813 406 740 82+0.013 078 740 712 623 1i 0.005 386 766 947 148 12+0.013 078 732 044 147 5i 0.005 386 768 346 670 2+0.013 078 732 620 866 3i 0.005 386 768 391 186 7+0.013 078 732 654 735 9i |
| Computation result of mathematica | 0.049 874 895 876 746 96+0.050 124 895 789 941 414i | 0.005 386 768 391 516 366+0.013 078 732 638 421 539i | |
表4 不同积分节点数对Iν (z)数值的影响
Table 4 Effect of different quadrature node number on Iν (z) numerical integral
| Legendre-Q node number | Laguerre-Q node number | I1(100+100i)(1041) | I1.5(100+100i)(1041) |
|---|---|---|---|
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 | 9 20 50 100 120 9 20 50 10 12 9 20 50 10 12 9 | 5.649 022 907 841 15-7.170 832 056 280 8i 5.649 022 907 841 15-7.170 832 056 280 8i 5.649 022 907 841 15-7.170 832 056 280 8i 5.649 022 907 841 15-7.170 832 056 280 8i 5.649 022 907 841 15-7.170 832 056 280 8i 5.838 268 811 088 22-7.170 832 056 428 27i 5.838 268 811 088 22-7.170 832 056 428 27i 5.838 268 811 088 22-7.170 832 056 428 27i 5.838 268 811 088 22-7.170 832 056 428 27i 5.838 268 811 088 22-7.170 832 056 428 27i 5.441 223 716 693 09-7.170 832 056 420 94i 5.441 223 716 693 09-7.170 832 056 420 94i 5.441 223 716 693 09-7.170 832 056 420 94i 5.441 223 716 693 09-7.170 832 056 420 94i 5.441 223 716 693 09-7.170 832 056 420 94i 5.440 180 930 607 12-7.170 832 056 420 94i | 5.329 209 512 340 45-7.131 390 769 869 88i 5.329 209 512 340 45-7.131 390 769 869 88i 5.329 209 512 340 45-7.131 390 769 869 88i 5.329 209 512 340 45-7.131 390 769 869 88i 5.329 209 512 340 45-7.131 390 769 869 88i 5.415 393 481 911 21-7.131 390 769 998 54i 5.415 393 481 911 21-7.131 390 769 998 54i 5.415 393 481 911 21-7.131 390 769 998 54i 5.415 393 481 911 21-7.131 390 769 998 54i 5.415 393 481 911 21-7.131 390 769 998 54i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 624 476 394 25-7.131 390 769 991 36i 5.445 631 277 329 02-7.131 390 769 991 36i |
| Computation result of mathematica | 5.440 180 930 607 121-7.170 832 056 420 942i | 5.445 631 277 329 021-7.131 390 769 991 36i | |
| Legendre-Q node number | Laguerre-Q node number | I1(10+10i) | I1.5(10+10i) |
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 100 100 100 100 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 | -2 246.672 213 980 02-460.680 913 539 618i -2 246.672 213 980 02-460.680 913 539 618i -2 246.672 213 980 02-460.680 913 539 618i -2 246.672 213 980 02-460.680 913 539 618i -2 246.672 213 980 02-460.680 913 539 618i -2 246.621 363 034 26-460.680 913 538 33i -2 246.621 363 034 26-460.680 913 538 33i -2 246.621 363 034 26-460.680 913 538 33i -2 246.621 363 034 26-460.680 913 538 33i -2 246.621 363 034 26-460.680 913 538 33i -2 246.626 790 704 06-460.680 913 538 353i | -2 161.755 302 903 74-517.817 943 622 61i -2 161.755 302 528 74-517.817 943 880 782i -2 161.755 302 625 35-517.817 943 880 709i -2 161.755 302 621 54-517.817 943 886 25i -2 161.755 302 621 9-517.817 943 886 483i -2 161.757 380 008 44-517.817 943 620 405i -2 161.757 379 633 44-517.817 943 878 577i -2 161.757 379 730 05-517.817 943 878 504i -2 161.757 379 726 25-517.817 943 884 045i -2 161.757 379 726 6-517.817 943 884 279i -2 161.755 955 363 47-517.817 943 620 445i -2 161.755 954 988 47-517.817 943 878 617i -2 161.755 955 085 08-517.817 943 878 545i -2 161.755 955 081 27-517.817 943 884 086i -2 161.755 955 081 63-517.817 943 884 319i -2 161.755 955 363 46-517.817 943 620 445i -2 161.755 954 988 46-517.817 943 878 617i -2 161.755 955 085 07-517.817 943 878 545i -2 161.755 955 081 27-517.817 943 884 086i -2 161.755 955 081 62-517.817 943 884 319i -2 161.755 955 363 46-517.817 943 620 445i -2 161.755 954 988 46-517.817 943 878 617i -2 161.755 955 085 07-517.817 943 878 545i -2 161.755 955 081 27-517.817 943 884 086i -2 161.755 955 081 62-517.817 943 884 319i |
| Computation result of mathematica | -2 246.626 790 704 259 7-460.680 913 538 474 8i | -2 161.755 955 081 561-517.817 943 884 214 4i | |
| Legendre-Q node number | Laguerre-Q node number | I1(0.1+0.1i) | I1.5(0.1+0.1i) |
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 100 100 100 100 120 120 120 120 120 | 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 | 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 8767 469+0.050 124 895 789 941 4i | 0.005 386 592 599 051 6+0.013 079 058 609 438 9i 0.005 386 813 406 221 88+0.013 078 740 823 150 8i 0.005 386 766 946 629 17+0.013 078 732 154 675 2i 0.005 386 768 346 151 25+0.013 078 732 731 394i 0.005 386 768 390 667 75+0.013 078 732 765 263 6i 0.005 386 592 599 513 1+0.013 079 058 509 496 4i 0.005 386 813 406 683 37+0.013 078 740 723 208 3i 0.005 386 766 947 090 66+0.013 078 732 054 732 7i 0.005 386 768 346 612 74+0.013 078 732 631 451 5i 0.005 386 768 391 129 24+0.013 078 732 665 321 1i 0.005 386 592 599 570 33+0.013 079 058 498 911 2i 0.005 386 813 406 740 6+0.013 078 740 712 623 2i 0.005 386 766 947 147 9+0.013 078 732 044 147 5i 0.005 386 768 346 669 97+0.013 078 732 620 866 3i 0.005 386 768 391 186 48+0.013 078 732 654 735 9i 0.005 386 592 599 570 55+0.013 079 058 498 911 2i 0.005 386 813 406 740 82+0.013 078 740 712 623 1i 0.005 386 766 947 148 12+0.013 078 732 044 147 5i 0.005 386 768 346 670 2+0.013 078 732 620 866 3i 0.005 386 768 391 186 7+0.013 078 732 654 735 9i 0.005 386 592 599 570 55+0.013 079 058 498 911 2i 0.005 386 813 406 740 82+0.013 078 740 712 623 1i 0.005 386 766 947 148 12+0.013 078 732 044 147 5i 0.005 386 768 346 670 2+0.013 078 732 620 866 3i 0.005 386 768 391 186 7+0.013 078 732 654 735 9i |
| Computation result of mathematica | 0.049 874 895 876 746 96+0.050 124 895 789 941 414i | 0.005 386 768 391 516 366+0.013 078 732 638 421 539i | |
| Legendre-Q node number | Laguerre-Q node number | K1(100+100i)(10-45) | K1.5(100+100i)(10-45) |
|---|---|---|---|
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 | 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 | 3.891 489 995 290 65+5.341 164 146 267 26 ×10-1i 3.891 489 995 290 65+5.341 164 146 267 26 ×10-1i 3.891 489 995 290 65+5.341 164 146 267 26×10-1i3.891 489 995 290 65+5.341 164 146 267 26×10-1i 3.891 489 995 290 65+5.341 164 146 267 26×10-1i 3.891 489 995 303 19+5.341 164 146 276 94×10-1i 3.891 489 995 303 19+5.341 164 146 276 94×10-1i 3.891 489 995 303 19+5.341 164 146 276 94 ×10-1i 3.891 489 995 303 19+5.341 164 146 276 94×10-1i 3.891 489 995 303 19+5.341 164 146 276 94 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78×10-1i 3.891 489 995 302 87+5.341 164 146 276 79 ×10-1i | 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 31×10-1i |
| Computation result of mathematica | 3.891 489 995 302 868-5.341 164 146 276 781×10-1i | 3.905 316 872 868 988 4 +5.236 474 075 909 306×10-1i | |
| Legendre-Q node number | Laguerre-Q node number | K1(10+10i)(10-5) | K1.5(10+10i)(10-5) |
9 20 | 9 9 | -8.513 248 398 486 12×10-1+1.285 270 896 710 38i -8.513 248 398 486 42×10-1+1.28527089672794i | -8.385 079 576 739 01×10-1+1.351 537 608 550 14i -8.385 079 576 739 17+1.351 537 608 544 57i |
| Computation result of mathematica | -8.513 248 398 486 778×10-1+1.285 270 896 727 885 7i | -8.385 079 576 739 163×10-1+1.351 537 608 544 568 2i | |
| Legendre-Q node number | Laguerre-Q node number | K1(0.1+0.1i) | K1.5(0.1+0.1i) |
9 20 | 9 9 | 4.832 450 419 492 04-5.089 841 771 626 26i 4.832 450 480 128 3-5.089 840 352 561 3i | 8.809 540 832 618 12-21.842 826 724 322 3i 8.809 541 742 069 08-21.842 951 279 499 5i |
| Computation result of mathematica | 4.832 450 480 128 301-5.089 840 352 561 297i | 8.809 541 742 069 088-21.842 951 279 499 495i | |
表5 不同积分节点数对Kν (z)数值的影响
Table 5 Effect of different quadrature node number on Kν (z) numerical integral
| Legendre-Q node number | Laguerre-Q node number | K1(100+100i)(10-45) | K1.5(100+100i)(10-45) |
|---|---|---|---|
9 9 9 9 9 10 10 10 10 10 20 20 20 20 20 100 | 9 20 50 100 120 9 20 50 100 120 9 20 50 100 120 9 | 3.891 489 995 290 65+5.341 164 146 267 26 ×10-1i 3.891 489 995 290 65+5.341 164 146 267 26 ×10-1i 3.891 489 995 290 65+5.341 164 146 267 26×10-1i3.891 489 995 290 65+5.341 164 146 267 26×10-1i 3.891 489 995 290 65+5.341 164 146 267 26×10-1i 3.891 489 995 303 19+5.341 164 146 276 94×10-1i 3.891 489 995 303 19+5.341 164 146 276 94×10-1i 3.891 489 995 303 19+5.341 164 146 276 94 ×10-1i 3.891 489 995 303 19+5.341 164 146 276 94×10-1i 3.891 489 995 303 19+5.341 164 146 276 94 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78 ×10-1i 3.891 489 995 302 87+5.341 164 146 276 78×10-1i 3.891 489 995 302 87+5.341 164 146 276 79 ×10-1i | 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 856 46 +5.236 474 075 899 65×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 869 29 +5.236 474 075 909 45×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 3×10-1i 3.905 316 872 868 99 +5.236 474 075 909 31×10-1i |
| Computation result of mathematica | 3.891 489 995 302 868-5.341 164 146 276 781×10-1i | 3.905 316 872 868 988 4 +5.236 474 075 909 306×10-1i | |
| Legendre-Q node number | Laguerre-Q node number | K1(10+10i)(10-5) | K1.5(10+10i)(10-5) |
9 20 | 9 9 | -8.513 248 398 486 12×10-1+1.285 270 896 710 38i -8.513 248 398 486 42×10-1+1.28527089672794i | -8.385 079 576 739 01×10-1+1.351 537 608 550 14i -8.385 079 576 739 17+1.351 537 608 544 57i |
| Computation result of mathematica | -8.513 248 398 486 778×10-1+1.285 270 896 727 885 7i | -8.385 079 576 739 163×10-1+1.351 537 608 544 568 2i | |
| Legendre-Q node number | Laguerre-Q node number | K1(0.1+0.1i) | K1.5(0.1+0.1i) |
9 20 | 9 9 | 4.832 450 419 492 04-5.089 841 771 626 26i 4.832 450 480 128 3-5.089 840 352 561 3i | 8.809 540 832 618 12-21.842 826 724 322 3i 8.809 541 742 069 08-21.842 951 279 499 5i |
| Computation result of mathematica | 4.832 450 480 128 301-5.089 840 352 561 297i | 8.809 541 742 069 088-21.842 951 279 499 495i | |
| Legendre-Q node number | Laguerre-Q node number | J1(100+100i)(1041) | J1.5(100+100i)(1041) |
|---|---|---|---|
9 9 10 20 100 120 | 9 120 120 120 120 9 | -1.123 786 772 762 86×10+1.913 757 648 850 46×10i -1.123 786 772 762 86×10+1.913 757 648 850 46×10i 2.820 657 587 071 06×10-1-2.524 843 928 121 03i -9.426 316 575 868 28+3.126 898 469 188 2 3i -7.170 832 056 420 95+5.440 180 930 607 13i -7.170 832 056 420 95+5.440 180 930 607 12i | -2.147 866 327 122 94×10+5.585 935 155 179 82i -2.147 866 327 122 94×10+5.585 935 155 179 8i 1.916 076 807 709 8-1.530 984 505 660 76i -8.793 633 064 311 94-4.414 496 526 132 58i -8.893 297 576 792 97-1.192 011 968 711 13i -8.893 297 576 792 96-1.192 011 968 711 14i |
| Computation result of mathematica | -7.170 832 056 420 98+5.440 180 930 607 079i | -8.893 297 576 792 953-1.192 011 968 711 164 2i | |
| Legendre-Q node number | Laguerre-Q node number | J1(10+10i) | J1.5(10+10i) |
9 10 10 20 100 120 120 120 120 120 | 9 9 120 120 120 9 20 50 100 120 | -461.432 022 564 397-2 156.066 133 644 77i -478.964 207 143 084-2 280.483 304 149 83i -478.964 207 143 084-2 280.483 304 149 83i -460.680 763 847 387-2 246.627 084 231 74i -460.680 913 538 354-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i | 1 069.300 665 030 83-1 841.065 186 5608i 1 187.738 344 363 19-1 935.094 694 898 51i 1 187.738 343 683 94-1 935.094 695 359 62i 1 162.438 106 016 97-1 894.744 817 856 91i 1 162.439 622 791 05-1 894.744 874 543 71i 1 162.439 651 684 05-1 894.744 874 137 04i 1 162.439 650 859 3-1 894.744 874 372 05i 1 162.439 651 016 67-1 894.744 874 595 51i 1 162.439 651 004 92-1 894.744 874 597 89i 1 162.439 651 004 81-1 894.744 874 598 15i |
| Computation result of mathematica | -460.680 913 538 475 5-2 246.626 790 704 26i | 1 162.439 715 567 97-1 894.744 874 649 176 8i | |
| Legendre-Q node number | Laguerre-Q node number | J1(0.1+0.1i) | J1.5(0.1+0.1i) |
9 9 10 20 20 100 120 120 120 120 120 | 9 120 120 9 120 120 9 20 50 100 120 | 0.050 124 895 794 289 7+0.049 874 895 870 360 2i 0.050 124 895 794 289 7+0.049 874 895 870 360 2i 0.050 124 895 789 864 3+0.049 874 895 876 960 7i 0.050 124 895 789 941 4+0.049 874 895 876 747i 0.050 124 895 789 941 4+0.049 874 895 876 747i | -0.044 140 745 468 414+0.013 395 009 371 841 7i -0.044 140 570 034 695+0.013 394 683 171 521 6i -0.036 039 699 869 193+0.013 288 488 364 185 9i -0.006 264 068 036 832 63+0.013 074 592 076 487 1i -0.006 263 892 603 113 54+0.013 074 265 876 167i 0.004 939 826 33034119+0.013 057 111 551 769 1i 0.005 091 498 358 533 37+0.013 057 421 994 589 3i 0.005 091 718 828 051 02+0.013 057 103 752 149 3i 0.005 091 672 346 605 28+0.013 057 095 188 728 1i 0.005 091 673 747 605 57+0.013 057 095 760 619 1i 0.005 091 673 792 252 46+0.013 057 095 794 269 2i |
| Computation result of mathematica | 0.050 124 895 789 941 414+0.049 874 895 876 746 96i | 0.005 439 040 079 631 124+0.013 057 080 996 276 27i | |
表6 不考虑三角函数振荡的Jν (z)数值积分结果
Table 6 Effect on Jν (z) numerical integral without considering trigonometric oscillation
| Legendre-Q node number | Laguerre-Q node number | J1(100+100i)(1041) | J1.5(100+100i)(1041) |
|---|---|---|---|
9 9 10 20 100 120 | 9 120 120 120 120 9 | -1.123 786 772 762 86×10+1.913 757 648 850 46×10i -1.123 786 772 762 86×10+1.913 757 648 850 46×10i 2.820 657 587 071 06×10-1-2.524 843 928 121 03i -9.426 316 575 868 28+3.126 898 469 188 2 3i -7.170 832 056 420 95+5.440 180 930 607 13i -7.170 832 056 420 95+5.440 180 930 607 12i | -2.147 866 327 122 94×10+5.585 935 155 179 82i -2.147 866 327 122 94×10+5.585 935 155 179 8i 1.916 076 807 709 8-1.530 984 505 660 76i -8.793 633 064 311 94-4.414 496 526 132 58i -8.893 297 576 792 97-1.192 011 968 711 13i -8.893 297 576 792 96-1.192 011 968 711 14i |
| Computation result of mathematica | -7.170 832 056 420 98+5.440 180 930 607 079i | -8.893 297 576 792 953-1.192 011 968 711 164 2i | |
| Legendre-Q node number | Laguerre-Q node number | J1(10+10i) | J1.5(10+10i) |
9 10 10 20 100 120 120 120 120 120 | 9 9 120 120 120 9 20 50 100 120 | -461.432 022 564 397-2 156.066 133 644 77i -478.964 207 143 084-2 280.483 304 149 83i -478.964 207 143 084-2 280.483 304 149 83i -460.680 763 847 387-2 246.627 084 231 74i -460.680 913 538 354-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i -460.680 913 538 353-2 246.626 790 704 06i | 1 069.300 665 030 83-1 841.065 186 5608i 1 187.738 344 363 19-1 935.094 694 898 51i 1 187.738 343 683 94-1 935.094 695 359 62i 1 162.438 106 016 97-1 894.744 817 856 91i 1 162.439 622 791 05-1 894.744 874 543 71i 1 162.439 651 684 05-1 894.744 874 137 04i 1 162.439 650 859 3-1 894.744 874 372 05i 1 162.439 651 016 67-1 894.744 874 595 51i 1 162.439 651 004 92-1 894.744 874 597 89i 1 162.439 651 004 81-1 894.744 874 598 15i |
| Computation result of mathematica | -460.680 913 538 475 5-2 246.626 790 704 26i | 1 162.439 715 567 97-1 894.744 874 649 176 8i | |
| Legendre-Q node number | Laguerre-Q node number | J1(0.1+0.1i) | J1.5(0.1+0.1i) |
9 9 10 20 20 100 120 120 120 120 120 | 9 120 120 9 120 120 9 20 50 100 120 | 0.050 124 895 794 289 7+0.049 874 895 870 360 2i 0.050 124 895 794 289 7+0.049 874 895 870 360 2i 0.050 124 895 789 864 3+0.049 874 895 876 960 7i 0.050 124 895 789 941 4+0.049 874 895 876 747i 0.050 124 895 789 941 4+0.049 874 895 876 747i | -0.044 140 745 468 414+0.013 395 009 371 841 7i -0.044 140 570 034 695+0.013 394 683 171 521 6i -0.036 039 699 869 193+0.013 288 488 364 185 9i -0.006 264 068 036 832 63+0.013 074 592 076 487 1i -0.006 263 892 603 113 54+0.013 074 265 876 167i 0.004 939 826 33034119+0.013 057 111 551 769 1i 0.005 091 498 358 533 37+0.013 057 421 994 589 3i 0.005 091 718 828 051 02+0.013 057 103 752 149 3i 0.005 091 672 346 605 28+0.013 057 095 188 728 1i 0.005 091 673 747 605 57+0.013 057 095 760 619 1i 0.005 091 673 792 252 46+0.013 057 095 794 269 2i |
| Computation result of mathematica | 0.050 124 895 789 941 414+0.049 874 895 876 746 96i | 0.005 439 040 079 631 124+0.013 057 080 996 276 27i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(100+100i)(1041) | Y1.5(100+100i)(1041) |
|---|---|---|---|
9 10 20 100 120 | 9 9 9 9 9 | -1.913 757 648 850 46×1042-1.123 786 772 762 86×10i 2.524 843 928 121 03+2.820 657 587 071 06×10-1i -3.126 898 469 188 23-9.426 316 575 868 28i -5.440 180 930 607 13-7.170 832 056 420 95i -5.440 180 930 607 12-7.170 832 056 420 95i | -5.585 935 155 179 82-2.147 866 327 122 94×10i 1.530 984 505 660 76+1.916 076 807 709 8i 4.414 496 526 132 58-8.793 633 064 311 94i 1.192 011 968 711 13-8.893 297 576 792 97i 1.192 011 968 711 14-8.893 297 576 792 96i |
| Computation result of mathematica | -5.440 180 930 607 079-7.170 832 056 420 98i | 1.192 011 968 711 133 5-8.893 297 576 792 957i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(10+10i) | Y1.5(10+10i) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | 2 156.066 532 616 44-461.431 795 453 334i 2 156.066 534 259 75-461.431 796 504 606i 2 280.483 455 619 36-478.964 293 955 729i 2 246.627 092 414 65-460.680 769 267 19i 2 246.626 798 886 92-460.680 918 958 119i 2 246.626 798 886 92-460.680 918 958 118i | 1 841.066 625 010 71+1 069.308 497 081 69i 1 841.066 628 140 46+1 069.308 495 116 16i 1 935.095 254 840 55+1 187.745 506 479 06i 1 894.744 879 084 26+1 162.440 253 899 31i 1 894.744 876 959 79+1 162.439 705 709 35i 1 894.744 876 959 79+1 162.439 705 709 35i |
| Computation result of mathematica | 2 246.626 798 886 549-460.680 918 958 177 76i | 1 894.7448769586213+1 162.439 705 709 301 3i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(0.1+0.1i)(1041) | Y1.5(0.1+0.1i)(1041) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | -3.299 614 054 021 95+3.117 633 495 108 32i -3.299 417 685 550 96+3.117 635 976 036 95i -3.292 726 714 369 78+3.129 863 469 538 03i -3.290 167 941 386 56+3.126 558 383 536 18i -3.290 167 946 217 2+3.126 558 384 375 72i -3.290 167 946 217 2+3.126 558 384 375 72i | -5.914 737 469 640 41+13.676 945 814 979 9i -5.911 840 739 104 78+13.677 122 290 250 7i -5.922 187 241 915 63+13.818 354 877 847 2i -5.880 153 320 651 88+13.803 908 027 789 1i -5.880 153 380 337 04+13.803 907 992 553 5i -5.880 153 380 337 05+13.803 907 992 553 5i |
| Computation result of mathematica | -3.290 167 902 511 65+3.126 558 420 426 83i | -5.880 152 711 849 398+13.803 908 839 184 65i | |
表7 不考虑三角函数振荡的Yν (z)数值积分结果
Table 7 Effect on Yν (z) numerical integral without considering trigonometric oscillation
| Legendre-Q node number | Laguerre-Q node number | Y1(100+100i)(1041) | Y1.5(100+100i)(1041) |
|---|---|---|---|
9 10 20 100 120 | 9 9 9 9 9 | -1.913 757 648 850 46×1042-1.123 786 772 762 86×10i 2.524 843 928 121 03+2.820 657 587 071 06×10-1i -3.126 898 469 188 23-9.426 316 575 868 28i -5.440 180 930 607 13-7.170 832 056 420 95i -5.440 180 930 607 12-7.170 832 056 420 95i | -5.585 935 155 179 82-2.147 866 327 122 94×10i 1.530 984 505 660 76+1.916 076 807 709 8i 4.414 496 526 132 58-8.793 633 064 311 94i 1.192 011 968 711 13-8.893 297 576 792 97i 1.192 011 968 711 14-8.893 297 576 792 96i |
| Computation result of mathematica | -5.440 180 930 607 079-7.170 832 056 420 98i | 1.192 011 968 711 133 5-8.893 297 576 792 957i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(10+10i) | Y1.5(10+10i) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | 2 156.066 532 616 44-461.431 795 453 334i 2 156.066 534 259 75-461.431 796 504 606i 2 280.483 455 619 36-478.964 293 955 729i 2 246.627 092 414 65-460.680 769 267 19i 2 246.626 798 886 92-460.680 918 958 119i 2 246.626 798 886 92-460.680 918 958 118i | 1 841.066 625 010 71+1 069.308 497 081 69i 1 841.066 628 140 46+1 069.308 495 116 16i 1 935.095 254 840 55+1 187.745 506 479 06i 1 894.744 879 084 26+1 162.440 253 899 31i 1 894.744 876 959 79+1 162.439 705 709 35i 1 894.744 876 959 79+1 162.439 705 709 35i |
| Computation result of mathematica | 2 246.626 798 886 549-460.680 918 958 177 76i | 1 894.7448769586213+1 162.439 705 709 301 3i | |
| Legendre-Q node number | Laguerre-Q node number | Y1(0.1+0.1i)(1041) | Y1.5(0.1+0.1i)(1041) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | -3.299 614 054 021 95+3.117 633 495 108 32i -3.299 417 685 550 96+3.117 635 976 036 95i -3.292 726 714 369 78+3.129 863 469 538 03i -3.290 167 941 386 56+3.126 558 383 536 18i -3.290 167 946 217 2+3.126 558 384 375 72i -3.290 167 946 217 2+3.126 558 384 375 72i | -5.914 737 469 640 41+13.676 945 814 979 9i -5.911 840 739 104 78+13.677 122 290 250 7i -5.922 187 241 915 63+13.818 354 877 847 2i -5.880 153 320 651 88+13.803 908 027 789 1i -5.880 153 380 337 04+13.803 907 992 553 5i -5.880 153 380 337 05+13.803 907 992 553 5i |
| Computation result of mathematica | -3.290 167 902 511 65+3.126 558 420 426 83i | -5.880 152 711 849 398+13.803 908 839 184 65i | |
| Legendre-Q node number | Laguerre-Q node number | I1(100+100i)(1041) | I1.5(100+100i)(1041) |
|---|---|---|---|
9 9 10 20 100 120 | 9 120 120 120 120 120 | 6.959 386 658 884 51-5.321 850 787 834 12i 6.959 386 658 884 51-5.321 850 787 834 12i 4.773 065 968 139 31-5.512 241 936 740 17i 5.509 137 967 558 27-7.141 595 702 583 3i 5.440 180 930 607 14-7.170 832 056 420 95i 5.440 180 930 607 15-7.170 832 056 420 95i | 6.975 663 080 448 87-5.335 852 391 178 2i 6.975 663 080 448 87-5.335 852 391 178 2i 4.821 346 818 447 78-5.485 601 406 340 62i 5.514 045 972 078 95-7.106 569 162 273 31i 5.445 631 277 329 04-7.131 390 769 991 37i 5.445 631 277 329 05-7.131 390 769 991 37i |
| Computation result of mathematica | 5.440 180 930 607 121-7.170 832 056 420 942i | 5.445 631 277 329 021-7.131 390 769 991 36i | |
| Legendre-Q node number | Laguerre-Q node number | I1(10+10i) | I1.5(10+10i) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | -2 225.090 191 036 33-447.605 455 379 589i -2 225.090 191 036 33-447.605 455 379 589i -2 256.059 354 662 39-455.333 721 911 24i -2 246.626 679 346 42-460.680 850 937 622i -2 246.626 790 704 06-460.680 913 538 352i -2 246.626 790 704 06-460.680 913 538 353i | -2 134.218 714 026 36-516.061 152 335 646i -2 134.218 713 744 52-516.061 152 599 52i -2 168.271 983 775 28-507.086 213 062 254i -2 161.755 740 816 57-517.817 950 579 407i -2 161.755 955 081 62-517.817 943 884 319i -2 161.755 955 081 62-517.817 943 884 319i |
| Computation result of mathematica | -2 246.626 790 704 259 7-460.680 913 538 474 8i | -2 161.755 955 081 561-517.817 943 884 214 4i | |
| Legendre-Q node number | Laguerre-Q node number | I1(0.1+0.1i) | I1.5(0.1+0.1i) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | 0.049 874 895 872 380 8+0.050 124 895 796 313 7i 0.049 87489 587 238 08+0.050 124 895 796 313 7i 0.049 874 895 876 824 6+0.050 124 895 789 728i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i | 0.005 386 592 550 376 37+0.013 079 058 880 275 3i 0.005 386 768 341 992 52+0.013 078 733 036 1i 0.005 386 768 431 053 17+0.013 078 732 665 057 4i 0.005 386 768 391 186 28+0.013 078 732 654 735 9i 0.005 386 768 391 186 7+0.013 078 732 654 735 9i 0.005 386 768 391 186 67+0.013 078 732 654 735 9i |
| Computation result of mathematica | 0.049 874 895 876 746 96+0.050 124 895 789 941 414i | 0.005 386 768 391 516 366+0.013 078 732 638 421 539i | |
表8 不考虑三角函数振荡的Yν (z)数值积分结果
Table 8 Effect on Yν (z) numerical integral without considering trigonometric oscillation
| Legendre-Q node number | Laguerre-Q node number | I1(100+100i)(1041) | I1.5(100+100i)(1041) |
|---|---|---|---|
9 9 10 20 100 120 | 9 120 120 120 120 120 | 6.959 386 658 884 51-5.321 850 787 834 12i 6.959 386 658 884 51-5.321 850 787 834 12i 4.773 065 968 139 31-5.512 241 936 740 17i 5.509 137 967 558 27-7.141 595 702 583 3i 5.440 180 930 607 14-7.170 832 056 420 95i 5.440 180 930 607 15-7.170 832 056 420 95i | 6.975 663 080 448 87-5.335 852 391 178 2i 6.975 663 080 448 87-5.335 852 391 178 2i 4.821 346 818 447 78-5.485 601 406 340 62i 5.514 045 972 078 95-7.106 569 162 273 31i 5.445 631 277 329 04-7.131 390 769 991 37i 5.445 631 277 329 05-7.131 390 769 991 37i |
| Computation result of mathematica | 5.440 180 930 607 121-7.170 832 056 420 942i | 5.445 631 277 329 021-7.131 390 769 991 36i | |
| Legendre-Q node number | Laguerre-Q node number | I1(10+10i) | I1.5(10+10i) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | -2 225.090 191 036 33-447.605 455 379 589i -2 225.090 191 036 33-447.605 455 379 589i -2 256.059 354 662 39-455.333 721 911 24i -2 246.626 679 346 42-460.680 850 937 622i -2 246.626 790 704 06-460.680 913 538 352i -2 246.626 790 704 06-460.680 913 538 353i | -2 134.218 714 026 36-516.061 152 335 646i -2 134.218 713 744 52-516.061 152 599 52i -2 168.271 983 775 28-507.086 213 062 254i -2 161.755 740 816 57-517.817 950 579 407i -2 161.755 955 081 62-517.817 943 884 319i -2 161.755 955 081 62-517.817 943 884 319i |
| Computation result of mathematica | -2 246.626 790 704 259 7-460.680 913 538 474 8i | -2 161.755 955 081 561-517.817 943 884 214 4i | |
| Legendre-Q node number | Laguerre-Q node number | I1(0.1+0.1i) | I1.5(0.1+0.1i) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | 0.049 874 895 872 380 8+0.050 124 895 796 313 7i 0.049 87489 587 238 08+0.050 124 895 796 313 7i 0.049 874 895 876 824 6+0.050 124 895 789 728i 0.049 874 895 876 746 9+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i 0.049 874 895 876 747+0.050 124 895 789 941 4i | 0.005 386 592 550 376 37+0.013 079 058 880 275 3i 0.005 386 768 341 992 52+0.013 078 733 036 1i 0.005 386 768 431 053 17+0.013 078 732 665 057 4i 0.005 386 768 391 186 28+0.013 078 732 654 735 9i 0.005 386 768 391 186 7+0.013 078 732 654 735 9i 0.005 386 768 391 186 67+0.013 078 732 654 735 9i |
| Computation result of mathematica | 0.049 874 895 876 746 96+0.050 124 895 789 941 414i | 0.005 386 768 391 516 366+0.013 078 732 638 421 539i | |
| Legendre-Q node number | Laguerre-Q node number | K1(100+100i)(10-45) | K1.5(100+100i)(10-45) |
|---|---|---|---|
9 10 20 100 120 | 9 9 9 9 9 | 3.665 324 078 643 9+3.827 635 639 299 62×10-2i 4.167 911 053 166 39+2.723 929 170 181 62×10-1i 3.891 623 386 076 95+5.391 931 456 120 43×10-1i 3.891 489 995 302 87+5.341 164 146 276 84×10-1i 3.891 489 995 302 87+5.341 164 146 276 84×10-1i | 3.685 631 512 517 56+1.549 243 743 429 89×10-2i 4.193 487 946 820 41+2.639 423 541 799 7×10-1i 3.905 116 969 110 59+5.289 442 151 282 8×10-1i 3.905 316 872 868 99+5.236 474 075 909 36×10-1i 3.905 316 872 868 99+5.236 474 075 909 36×10-1i |
| Computation result of mathematica | 3.891 489 995 302 868-5.341 164 146 276 781×10-1i | 3.905 316 872 868 988 4+5.236 474 075 909 306×10-1i | |
| Legendre-Q node number | Laguerre-Q node number | K1(10+10i)(10-5) | K1.5(10+10i)(10-5) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | -8.513 157 980 724 541×10-1+1.285 292 518 146 47i -8.513 151 420 897 88×10-1+1.285 268 863 008 45i -8.513 259 189 085 71×10-1+1.285 270 541 378 97i -8.513 248 506 760 4×10-1+1.285 270 918 491 14i -8.513 248 506 760 41×10-1+1.285 270 918 491 14i -8.513 248 506 760 41×10-1+1.285 270 918 491 14i | -8.384 955 236 427 42×10-1+1.351 587 211 596 82i -8.384 938 736 886 65×10-1+1.351 542 107 564 41i -8.385 091 121 695 57×10-1+1.351 536 295 11031i -8.385 079 885 824 95×10-1+1.351 537 651 018 08i -8.385 079 885 824 97×10-1+1.351 537 651 018 08i -8.385 079 885 824 97×10-1+1.351 537 651 018 08i |
| Computation result of mathematica | -8.513 248 398 486 778×10-1+1.285 270 896 727 885 7i | -8.385 079 576 739 163×10-1+1.351 537 608 544 568 2i | |
| Legendre-Q node number | Laguerre-Q node number | K1(0.1+0.1i) | K1.5(0.1+0.1i) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | 4.666 613 222 088 31-5.113 304 289 403 03i 4.666 613 218 784 14-5.113 304 309 741 09i 4.861 611 240 942 23-5.011 185 226 551 58i 4.832 444 149 308 33-5.089 831 083 111 6i 4.832 450 480 152 64-5.089 840 352 545 17i 4.832 450 480 152 64-5.089 840 352 545 17i | 7.431 940 087 201 8-22.725 509 047 548 6i 7.431 940 019 466 69-22.725 509 466 990 9i 8.728 462 226 126 93-20.981 961 109 593 8i 8.809 391 181 854 34-21.842 890 574 361 8i 8.809 541 742 558 02-21.842 951 279 063 2i 8.809 541 742 558 01-21.842 951 279 063 2i |
| Computation result of mathematica | 4.832 450 480 128 301-5.089 840 352 561 297i | 8.809 541 742 069 088-21.842 951 279 499 495i | |
表9 不考虑三角函数振荡的Kν (z)数值积分结果
Table 9 Effect on Kν (z) numerical integral without considering trigonometric oscillation
| Legendre-Q node number | Laguerre-Q node number | K1(100+100i)(10-45) | K1.5(100+100i)(10-45) |
|---|---|---|---|
9 10 20 100 120 | 9 9 9 9 9 | 3.665 324 078 643 9+3.827 635 639 299 62×10-2i 4.167 911 053 166 39+2.723 929 170 181 62×10-1i 3.891 623 386 076 95+5.391 931 456 120 43×10-1i 3.891 489 995 302 87+5.341 164 146 276 84×10-1i 3.891 489 995 302 87+5.341 164 146 276 84×10-1i | 3.685 631 512 517 56+1.549 243 743 429 89×10-2i 4.193 487 946 820 41+2.639 423 541 799 7×10-1i 3.905 116 969 110 59+5.289 442 151 282 8×10-1i 3.905 316 872 868 99+5.236 474 075 909 36×10-1i 3.905 316 872 868 99+5.236 474 075 909 36×10-1i |
| Computation result of mathematica | 3.891 489 995 302 868-5.341 164 146 276 781×10-1i | 3.905 316 872 868 988 4+5.236 474 075 909 306×10-1i | |
| Legendre-Q node number | Laguerre-Q node number | K1(10+10i)(10-5) | K1.5(10+10i)(10-5) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | -8.513 157 980 724 541×10-1+1.285 292 518 146 47i -8.513 151 420 897 88×10-1+1.285 268 863 008 45i -8.513 259 189 085 71×10-1+1.285 270 541 378 97i -8.513 248 506 760 4×10-1+1.285 270 918 491 14i -8.513 248 506 760 41×10-1+1.285 270 918 491 14i -8.513 248 506 760 41×10-1+1.285 270 918 491 14i | -8.384 955 236 427 42×10-1+1.351 587 211 596 82i -8.384 938 736 886 65×10-1+1.351 542 107 564 41i -8.385 091 121 695 57×10-1+1.351 536 295 11031i -8.385 079 885 824 95×10-1+1.351 537 651 018 08i -8.385 079 885 824 97×10-1+1.351 537 651 018 08i -8.385 079 885 824 97×10-1+1.351 537 651 018 08i |
| Computation result of mathematica | -8.513 248 398 486 778×10-1+1.285 270 896 727 885 7i | -8.385 079 576 739 163×10-1+1.351 537 608 544 568 2i | |
| Legendre-Q node number | Laguerre-Q node number | K1(0.1+0.1i) | K1.5(0.1+0.1i) |
9 9 10 20 100 120 | 9 120 120 120 120 120 | 4.666 613 222 088 31-5.113 304 289 403 03i 4.666 613 218 784 14-5.113 304 309 741 09i 4.861 611 240 942 23-5.011 185 226 551 58i 4.832 444 149 308 33-5.089 831 083 111 6i 4.832 450 480 152 64-5.089 840 352 545 17i 4.832 450 480 152 64-5.089 840 352 545 17i | 7.431 940 087 201 8-22.725 509 047 548 6i 7.431 940 019 466 69-22.725 509 466 990 9i 8.728 462 226 126 93-20.981 961 109 593 8i 8.809 391 181 854 34-21.842 890 574 361 8i 8.809 541 742 558 02-21.842 951 279 063 2i 8.809 541 742 558 01-21.842 951 279 063 2i |
| Computation result of mathematica | 4.832 450 480 128 301-5.089 840 352 561 297i | 8.809 541 742 069 088-21.842 951 279 499 495i | |
| Laguerre-Q node number | K1(100+100i)(10-45) | K1.5(100+100i)(10-45) |
|---|---|---|
9 120 120 120 120 9 20 50 100 120 | 3.718 882 077 687 62-2.719 376 695 554 72i 3.960 423 218 557 06+5.305 204 733 227 81×10-1i 3.960 423 218 557 06+5.305 204 733 227 81×10-1i 3.960 423 218 557 06+5.305 204 733 227 81×10-1i 3.960 423 218 557 06+5.305 204 733 227 81×10-1i 3.718 882 077 687 62-2.719 376 695 554 72i 5.072 042 163 908 8+1.462 618 435 104 01i 4.013 554 296 581 08+5.560 104 391 213 11E×10-2i 3.843 097 475 942 79+4.293 195 494 085 91E×10-1i 3.960 423 218 557 06+5.305 204 733 227 81E×10-1i | 3.772 526 673 888 47-2.758 603 501 273 13i 3.976 448 640 455 36+5.227 230 836 858 04E×10-1i 3.976 448 640 455 36+5.227 230 836 858 04E×10-1i 3.976 448 640 455 36+5.227 230 836 858 04E×10-1i 3.976 448 640 455 36+5.227 230 836 858 04×10-1i 3.772 526 673 888 47-2.758 603 501 273 13i 5.089 010 508 226 77+1.466 928 626 149 89i 4.039 467 249 666 93+3.943 417 987 916 05×10-2i 3.859 344 100 135 44+4.143 028 412 185 3E×10-1i 3.976 448 640 455 36+5.227 230 836 858 04×10-1i |
Computation result of mathematica | 3.891 489 995 302 868-5.341 164 146 276 781×10-1i | 3.905 316 872 868 988 4+5.236 474 075 909 306×10-1i |
| Laguerre-Q node number | K1(10+10i)(10-6) | K1.5(10+10i)(10-6) |
9 120 9 120 120 9 20 50 100 120 | -1.116 791 335 702 58×10+8.822 764 922 900 86i -8.518 257 148 882 3+1.285 766 362 816 62×10i -1.116 791 335 702 58×10+8.822 764 922 900 86i -8.518 257 148 882 3+1.285 766 362 816 62×10i -8.518 257 148 882 3+1.285 766 362 816 62×10i -1.116 791 335 702 58×10+8.822 764 922 900 86i -9.772 282 474 757 14+1.383 458 210 774 12×10i -8.383 393 084 976 01+1.270 758 792 111 98×10i -8.515 158 559 787 98+1.283 670 516 155 87×10i -8.518 257 148 882 3+1.285 766 362 816 62×10i | -1.092 834 342 578 71×10+8.472 745 811 408 21i -8.395 191 271 863 24+1.352 098 123 954 04×10i -1.092 834 342 578 71×10+8.472 745 811 408 21i -8.395 191 271 863 24+1.352 098 123 954 04×10i -8.395 191 271 863 24+1.352 098 123 954 04×10i -1.092 834 342 578 71×10+8.472 745 811 408 21i -1.012 012 398 406 68×10+1.446 253 063 635 73×10i -8.161 945 966 987 41+1.335 903 003 325 35×10i -8.381 322 702 495 18+1.349 012 001 498 13×10i -8.395 191 271 863 24+1.352 098 123 954 04×10i |
Computation result of mathematica | -8.513 248 398 486 778×10-1+1.285 270 896 727 885 7i | -8.385 079 576 739 163×10-1+1.351 537 608 544 568 2i |
| Laguerre-Q node number | K1(0.1+0.1i)(10-45) | K1.5(0.1+0.1i)(10-45) |
9 120 120 120 120 9 20 50 100 120 | 2.000 293 091 331 1-5.711 661 081 470 51i 4.836 838 488 499 64-5.066 415 446 269 02i 4.836 838 488 499 64-5.066 415 446 269 02i 4.836 838 488 499 64-5.066 415 446 269 02i 4.836 838 488 499 64-5.066 415 446 269 02i 2.000 293 091 331 1-5.711 661 081 470 51i 3.994 153 556 669 03-4.321 628 244 007 94i 4.944 357 668 662 67-5.309 006 141 299 95i 4.862 025 465 845 1-5.120 116 446 256 77i 4.836 838 488 499 64-5.066 415 446 269 02i | -8.450 835 295 817 55-31.304 133 482 290 5i 8.771 787 476 455 73-21.564 060 507 474 6i 8.771 787 476 455 73-21.564 060 507 474 6i 8.771 787 476 455 73-21.564 060 507 474 6i 8.771 787 476 455 73-21.564 060 507 474 6i -8.450 835 295 817 55-31.304 133 482 290 5i 0.776 935 266 947 61-17.932 280 275 271i 10.482 111 440 136 7-23.548 665 210 410 8i 9.234 712 459 372 28-22.065 697 294 998 8i 8.771 787 476 455 73-21.564 060 507 474 6i |
Computation result of mathematica | 4.832 450 480 128 301-5.089 840 352 561 297i | 8.809 541 742 069 088-21.842 951 279 499 495i |
表10 直接对[0,∞]区间进行高斯拉盖尔积分对贝塞尔函数计算的影响
Table 10 Effects of directly applying Gauss-Laguerre quadrature over [0,∞] on Bessel function computations
| Laguerre-Q node number | K1(100+100i)(10-45) | K1.5(100+100i)(10-45) |
|---|---|---|
9 120 120 120 120 9 20 50 100 120 | 3.718 882 077 687 62-2.719 376 695 554 72i 3.960 423 218 557 06+5.305 204 733 227 81×10-1i 3.960 423 218 557 06+5.305 204 733 227 81×10-1i 3.960 423 218 557 06+5.305 204 733 227 81×10-1i 3.960 423 218 557 06+5.305 204 733 227 81×10-1i 3.718 882 077 687 62-2.719 376 695 554 72i 5.072 042 163 908 8+1.462 618 435 104 01i 4.013 554 296 581 08+5.560 104 391 213 11E×10-2i 3.843 097 475 942 79+4.293 195 494 085 91E×10-1i 3.960 423 218 557 06+5.305 204 733 227 81E×10-1i | 3.772 526 673 888 47-2.758 603 501 273 13i 3.976 448 640 455 36+5.227 230 836 858 04E×10-1i 3.976 448 640 455 36+5.227 230 836 858 04E×10-1i 3.976 448 640 455 36+5.227 230 836 858 04E×10-1i 3.976 448 640 455 36+5.227 230 836 858 04×10-1i 3.772 526 673 888 47-2.758 603 501 273 13i 5.089 010 508 226 77+1.466 928 626 149 89i 4.039 467 249 666 93+3.943 417 987 916 05×10-2i 3.859 344 100 135 44+4.143 028 412 185 3E×10-1i 3.976 448 640 455 36+5.227 230 836 858 04×10-1i |
Computation result of mathematica | 3.891 489 995 302 868-5.341 164 146 276 781×10-1i | 3.905 316 872 868 988 4+5.236 474 075 909 306×10-1i |
| Laguerre-Q node number | K1(10+10i)(10-6) | K1.5(10+10i)(10-6) |
9 120 9 120 120 9 20 50 100 120 | -1.116 791 335 702 58×10+8.822 764 922 900 86i -8.518 257 148 882 3+1.285 766 362 816 62×10i -1.116 791 335 702 58×10+8.822 764 922 900 86i -8.518 257 148 882 3+1.285 766 362 816 62×10i -8.518 257 148 882 3+1.285 766 362 816 62×10i -1.116 791 335 702 58×10+8.822 764 922 900 86i -9.772 282 474 757 14+1.383 458 210 774 12×10i -8.383 393 084 976 01+1.270 758 792 111 98×10i -8.515 158 559 787 98+1.283 670 516 155 87×10i -8.518 257 148 882 3+1.285 766 362 816 62×10i | -1.092 834 342 578 71×10+8.472 745 811 408 21i -8.395 191 271 863 24+1.352 098 123 954 04×10i -1.092 834 342 578 71×10+8.472 745 811 408 21i -8.395 191 271 863 24+1.352 098 123 954 04×10i -8.395 191 271 863 24+1.352 098 123 954 04×10i -1.092 834 342 578 71×10+8.472 745 811 408 21i -1.012 012 398 406 68×10+1.446 253 063 635 73×10i -8.161 945 966 987 41+1.335 903 003 325 35×10i -8.381 322 702 495 18+1.349 012 001 498 13×10i -8.395 191 271 863 24+1.352 098 123 954 04×10i |
Computation result of mathematica | -8.513 248 398 486 778×10-1+1.285 270 896 727 885 7i | -8.385 079 576 739 163×10-1+1.351 537 608 544 568 2i |
| Laguerre-Q node number | K1(0.1+0.1i)(10-45) | K1.5(0.1+0.1i)(10-45) |
9 120 120 120 120 9 20 50 100 120 | 2.000 293 091 331 1-5.711 661 081 470 51i 4.836 838 488 499 64-5.066 415 446 269 02i 4.836 838 488 499 64-5.066 415 446 269 02i 4.836 838 488 499 64-5.066 415 446 269 02i 4.836 838 488 499 64-5.066 415 446 269 02i 2.000 293 091 331 1-5.711 661 081 470 51i 3.994 153 556 669 03-4.321 628 244 007 94i 4.944 357 668 662 67-5.309 006 141 299 95i 4.862 025 465 845 1-5.120 116 446 256 77i 4.836 838 488 499 64-5.066 415 446 269 02i | -8.450 835 295 817 55-31.304 133 482 290 5i 8.771 787 476 455 73-21.564 060 507 474 6i 8.771 787 476 455 73-21.564 060 507 474 6i 8.771 787 476 455 73-21.564 060 507 474 6i 8.771 787 476 455 73-21.564 060 507 474 6i -8.450 835 295 817 55-31.304 133 482 290 5i 0.776 935 266 947 61-17.932 280 275 271i 10.482 111 440 136 7-23.548 665 210 410 8i 9.234 712 459 372 28-22.065 697 294 998 8i 8.771 787 476 455 73-21.564 060 507 474 6i |
Computation result of mathematica | 4.832 450 480 128 301-5.089 840 352 561 297i | 8.809 541 742 069 088-21.842 951 279 499 495i |
| [1] | GRADSBTYN I S, RYZBIK L M. Table of integrals, series, and products[M]. 6th ed. China: Elsevier (Singapore) Pte. Ltd., 2004. |
| [2] | ABRAMOWITZ M, STEGUN I A. Handbook of mathematical functions with formulas, graphs, and mathematical tables[M]. 10th ed. Washington D C: U.S. Government Printing Office, 1972. |
| [3] |
FREDRIK J. Arb: efficient arbitrary-precision midpoint-radius interval arithmetic[J]. IEEE Transactions on Computers, 2017, 66(8): 1281-1292.
DOI URL |
| [4] | FREDRIK J. Arb documentation release 2.23.0[EB/OL]. . |
| [5] | 雷银照. 时谐电磁场解析方法[M]. 第1版. 北京: 科学出版社, 2000. |
| LEI Y Z. Analytical methods for time-harmonic electromagnetic fields[M]. 1st ed. Beijing: Science Press, 2000 (in Chinese). | |
| [6] | 张善杰, 金建铭. 特殊函数计算手册[M]. 第1版. 南京: 南京大学出版社, 2001. |
| ZHANG S J, JIN J M. Handbook of special functions[M]. 1st ed. Nanjing: Nanjing University Press, 2001 (in Chinese). | |
| [7] | 第一类和第二类贝塞尔函数[EB/OL]. . |
| First and Second Kind Bessel Functions [EB/OL]. (in Chinese). | |
| [8] | 张善杰. 特殊函数的数值计算综述[J]. 计算物理, 1992, 9(4): 431-436. |
| ZHANG S J. Review on numerical calculation of special functions [J]. Computational Physics, 1992, 9(4): 431-436 (in Chinese). | |
| [9] | FRANK B G. New approximations to JO and J1 Bessel functions[J]. IEEE Transations on Antennas and Propagation, 1995, 43(8): 904-907. |
| [10] | Dhanesh G K, ARAVINDA K. New expansions of Bessel functions of first kind and complex argument[J]. EEE Transations on Antennas and Propagation, 2013, 61(5): 2708-2712. |
| [11] | FRANK W J O, DANIEL W L. NIST handbook of mathematical functions[M]. First published 2010. New York: Cambridge University Press, 2010. |
| [12] | 马振华. 现代应用数学手册: 计算与数值分析卷[M]. 第1版. 北京: 清华大学出版社, 2005. |
| MA Z H. Modern applied mathematics handbook: volume on computation and numerical analysis[M]. 1st ed. Beijing: Tsinghua University Press, 2005 (in Chinese). | |
| [13] | OLVER F W J, LOZIER D W, BOISVERT R F, et al. NIST handbook of mathematical functions[M]. Cambridge, England: Cambridge University Press, 2010. |
| [14] | 《数学手册》编写组. 数学手册[M]. 第1版. 北京: 高等教育出版社, 1979. |
| Compilation Team of "Mathematical Handbook". Mathematical handbook[M]. 1st ed. Beijing: Higher Education Press, 1979 (in Chinese). | |
| [15] | 张庆礼, 王晓梅, 殷绍唐, 等. 高阶高斯积分节点的高精度数值计算[J]. 中国工程科学, 2008, 10(2): 35-40. |
| ZHANG Q L, WANG X M, YIN S T, et al. High-precision numerical calculation of high-order Gaussian integration nodes[J]. Chinese Engineering Science, 2008, 10(2): 35-40 (in Chinese). | |
| [16] | WATSON G N. A treatise on the theory of Bessel functions[M]. 2nd ed. USA: Cambridge University Press, 1995. |
| [1] | 郭兆枫, 陈传敏, 乔钏熙, 倪园. 超胞声子晶体板的轻量化设计与研究[J]. 人工晶体学报, 2021, 50(1): 13-19. |
| [2] | 王杨杨;闫志忠. 一种计算层状声子晶体弹性波带结构的无网格弱形式RBF方法[J]. 人工晶体学报, 2018, 47(12): 2632-2642. |
| [3] | 邸志刚;贾春荣;邴丕彬;姚建铨;陆颖. 基于银纳米颗粒的PCF SERS传感器优化设计[J]. 人工晶体学报, 2014, 43(3): 663-669. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS