
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (12): 2200-2208.DOI: 10.16553/j.cnki.issn1000-985x.2025.0137
江静雯(
), 罗苑幸, 王美珍, 黄柯雯, 罗国平(
), 朱伟玲
收稿日期:2025-07-01
出版日期:2025-12-20
发布日期:2026-01-04
通信作者:
罗国平,博士,高级工程师。E-mail:guopingluo@@126.com
作者简介:江静雯(2004—),女,广东省人。E-mail:2909216841@qq.com
基金资助:
JIANG Jingwen(
), LUO Yuanxing, WANG Meizhen, HUANG Kewen, LUO Guoping(
), ZHU Weiling
Received:2025-07-01
Online:2025-12-20
Published:2026-01-04
摘要: 碘化甲脒锡(FASnI3)因环境友好、高吸收系数和合适的带隙等优点,成为替代铅基钙钛矿材料的热门候选材料。本文采用SCAPS仿真软件对p-i-n结构为阳极/空穴传输层/FASnI3/电子传输层/阴极的平面型FASnI3钙钛矿太阳电池进行仿真研究。基于实验结果构建初始仿真模型,并探讨载流子传输层材料、钙钛矿层参数、界面缺陷态密度和工作温度对FASnI3钙钛矿太阳电池光电性能的影响。仿真结果表明,采用30 nm厚的CuI作为空穴传输层,将器件能量转换效率从9.56%提升至10.64%。以此为基础分析钙钛矿层厚度、缺陷态密度和电子亲和能,电子传输层厚度,界面缺陷态面密度和工作温度对器件光电性能的影响。优化后FASnI3钙钛矿太阳电池有望实现26.63%的能量转换效率,相应的开路电压为1.127 V,短路电流密度为28.08 mA·cm-2,填充因子为84.13%。仿真结果对实验提升FASnI3钙钛矿太阳电池的光电性能参数提供了理论参考。
中图分类号:
江静雯, 罗苑幸, 王美珍, 黄柯雯, 罗国平, 朱伟玲. 碘化甲脒锡钙钛矿太阳电池光电性能仿真研究[J]. 人工晶体学报, 2025, 54(12): 2200-2208.
JIANG Jingwen, LUO Yuanxing, WANG Meizhen, HUANG Kewen, LUO Guoping, ZHU Weiling. Simulation Study on the Photoelectric Performance of Formamidinium Tin Iodide Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2025, 54(12): 2200-2208.
| Parameter | PEDOT∶PSS | FASnI3 | PCBM | CuI | CuSCN | NiO | Cu2O |
|---|---|---|---|---|---|---|---|
| Thickness, d/nm | 50 | 350 | 50 | 50 | 50 | 50 | 50 |
| Bandgap, Eg/eV | 2.88 | 1.41 | 2.00 | 3.10 | 3.60 | 3.60 | 2.10 |
| Electron affinity, χ/eV | 2.05 | 3.58 | 3.90 | 2.10 | 1.70 | 1.80 | 3.20 |
| Dielectric constant, εr | 3.0 | 8.2 | 3.9 | 6.5 | 10.0 | 11.7 | 7.1 |
| Effective conduction band density, NC/cm-3 | 2.2×1018 | 1×1018 | 2.5×1021 | 2.2×1018 | 2.2×1019 | 2.5×1020 | 2×1017 |
| Effective valence band density, NV/cm-3 | 1.8×1018 | 1×1018 | 2.5×1021 | 1.8×1018 | 1.8×1019 | 2.5×1020 | 1×1019 |
| Electron mobility, μn/(cm2·V-1·s-1) | 2×10-4 | 22 | 0.2 | 1×102 | 1×102 | 2.8 | 2×102 |
| Hole mobility, μp/(cm2·V-1·s-1) | 2×10-4 | 22 | 0.2 | 4.39×101 | 2.5×101 | 2.8 | 8×101 |
| Donor doping concentration, ND/cm-3 | — | — | 2.93×1017 | — | — | — | — |
| Acceptor doping concentration, NA/cm-3 | 2×1019 | 1×1017 | 0 | 1×1018 | 1×1018 | 3×1018 | 1×1018 |
| Defect concentration, Nt/cm-3 | 1×1015 | 2×1015 | 2×1015 | 1×1015 | 1×1015 | 1×1014 | 1×1017 |
| Capture cross section for elctron, σn/cm-2 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 |
| Capture cross section for hole, σp/cm-2 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 |
表1 FASnI3钙钛矿太阳电池仿真研究基本参数
Table 1 Parameters for the simulation study of FASnI3 perovskite solar cell
| Parameter | PEDOT∶PSS | FASnI3 | PCBM | CuI | CuSCN | NiO | Cu2O |
|---|---|---|---|---|---|---|---|
| Thickness, d/nm | 50 | 350 | 50 | 50 | 50 | 50 | 50 |
| Bandgap, Eg/eV | 2.88 | 1.41 | 2.00 | 3.10 | 3.60 | 3.60 | 2.10 |
| Electron affinity, χ/eV | 2.05 | 3.58 | 3.90 | 2.10 | 1.70 | 1.80 | 3.20 |
| Dielectric constant, εr | 3.0 | 8.2 | 3.9 | 6.5 | 10.0 | 11.7 | 7.1 |
| Effective conduction band density, NC/cm-3 | 2.2×1018 | 1×1018 | 2.5×1021 | 2.2×1018 | 2.2×1019 | 2.5×1020 | 2×1017 |
| Effective valence band density, NV/cm-3 | 1.8×1018 | 1×1018 | 2.5×1021 | 1.8×1018 | 1.8×1019 | 2.5×1020 | 1×1019 |
| Electron mobility, μn/(cm2·V-1·s-1) | 2×10-4 | 22 | 0.2 | 1×102 | 1×102 | 2.8 | 2×102 |
| Hole mobility, μp/(cm2·V-1·s-1) | 2×10-4 | 22 | 0.2 | 4.39×101 | 2.5×101 | 2.8 | 8×101 |
| Donor doping concentration, ND/cm-3 | — | — | 2.93×1017 | — | — | — | — |
| Acceptor doping concentration, NA/cm-3 | 2×1019 | 1×1017 | 0 | 1×1018 | 1×1018 | 3×1018 | 1×1018 |
| Defect concentration, Nt/cm-3 | 1×1015 | 2×1015 | 2×1015 | 1×1015 | 1×1015 | 1×1014 | 1×1017 |
| Capture cross section for elctron, σn/cm-2 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 |
| Capture cross section for hole, σp/cm-2 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 |
| Parameter | HTL/FASnI3 | FASnI3/ETL | FASnI3 |
|---|---|---|---|
| Defect style | Neutral | Neutral | Neutral |
| Energetic distribution | Single | Single | Gaussian |
| Energy level with respect to EV/eV | 0.6 | 0.6 | 0.6 |
| Characteristic energy/eV | 0.1 | 0.1 | 0.1 |
| Total density/cm-3 | 2.5×1014 | 2.5×1014 | 2.0×1015 |
表2 FASnI3钙钛矿太阳电池模拟研究缺陷参数
Table 2 Defect parameter for the simulation study on FASnI3 perovskite solar cell
| Parameter | HTL/FASnI3 | FASnI3/ETL | FASnI3 |
|---|---|---|---|
| Defect style | Neutral | Neutral | Neutral |
| Energetic distribution | Single | Single | Gaussian |
| Energy level with respect to EV/eV | 0.6 | 0.6 | 0.6 |
| Characteristic energy/eV | 0.1 | 0.1 | 0.1 |
| Total density/cm-3 | 2.5×1014 | 2.5×1014 | 2.0×1015 |
| HTL | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
|---|---|---|---|---|
| CuI | 0.570 | 26.00 | 71.76 | 10.62 |
| CuSCN | 0.569 | 26.08 | 60.83 | 9.03 |
| NiO | 0.568 | 26.08 | 56.30 | 8.34 |
| PEDOT∶PSS | 0.564 | 23.19 | 73.07 | 9.56 |
| Cu2O | 0.538 | 24.81 | 61.73 | 8.24 |
表3 不同HTL的FASnI3钙钛矿太阳电池光电性能
Table 3 Photoelectric properties of FASnI3 perovskite solar cells with various HTL
| HTL | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
|---|---|---|---|---|
| CuI | 0.570 | 26.00 | 71.76 | 10.62 |
| CuSCN | 0.569 | 26.08 | 60.83 | 9.03 |
| NiO | 0.568 | 26.08 | 56.30 | 8.34 |
| PEDOT∶PSS | 0.564 | 23.19 | 73.07 | 9.56 |
| Cu2O | 0.538 | 24.81 | 61.73 | 8.24 |
| [1] | WANG D, LIU Z X, QIAO Y, et al. Rigid molecules anchoring on NiO x enable >26% efficiency perovskite solar cells[J]. Joule, 2025, 9(3): 101815. |
| [2] | CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364): 739-744. |
| [3] | LIU H R, ZHANG Z H, ZUO W W, et al. Pure tin halide perovskite solar cells: focusing on preparation and strategies[J]. Advanced Energy Materials, 2023, 13(3): 2202209. |
| [4] | 曾文博, 冯 琳, 李国辉, 等. 无铅钙钛矿光电子器件研究进展[J]. 激光与红外, 2022, 52(5): 627-635. |
| ZENG W B, FENG L, LI G H, et al. Research progress on lead-free perovskite optoelectronic devices[J]. Laser & Infrared, 2022, 52(5): 627-635 (in Chinese). | |
| [5] | WU T H, LIU X, LUO X H, et al. Lead-free tin perovskite solar cells[J]. Joule, 2021, 5(4): 863-886. |
| [6] | LIAO W Q, ZHAO D W, YU Y, et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%[J]. Advanced Materials, 2016, 28(42): 9333-9340. |
| [7] | CHEN J F, LUO J F, HOU E L, et al. Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives[J]. Nature Photonics, 2024, 18(5): 464-470. |
| [8] | SHI Y D, ZHU Z H, MIAO D H, et al. Interfacial dipoles boost open-circuit voltage of tin halide perovskite solar cells[J]. ACS Energy Letters, 2024, 9(4): 1895-1897. |
| [9] | MENG X Y, WANG Y B, LIN J B, et al. Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells[J]. Joule, 2020, 4(4): 902-912. |
| [10] | YU B B, CHEN Z H, ZHU Y D, et al. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%[J]. Advanced Materials, 2021, 33(36): 2102055. |
| [11] | JIANG X Y, WANG F, WEI Q, et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design[J]. Nature Communications, 2020, 11(1): 1245. |
| [12] | KHAN F, FATIMA RASHEED J, AHMAD V, et al. Studies on the performance of FASnI3∶Zn2+-based lead-free perovskite solar cells: a numerical simulation[J]. Optik, 2024, 306: 171810. |
| [13] | KUMAR M, RAJ A, KUMAR A, et al. An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation[J]. Optical Materials, 2020, 108: 110213. |
| [14] | ALZOUBI T, KADHEM W J, GHARRAM MAL, et al. Advanced optoelectronic modeling and optimization of HTL-free FASnI3/C60 perovskite solar cell architecture for superior performance[J]. Nanomaterials, 2024, 14(12): 1062. |
| [15] | REHMAN A U, AFZAL S, NAEEM I, et al. Performance optimization of FASnI3 based perovskite solar cell through SCAPS-1D simulation[J]. Hybrid Advances, 2024, 7: 100301. |
| [16] | 甘永进, 邱贵新, 曾昭祥, 等. 基于FASnI3的钙钛矿太阳电池仿真研究[J]. 电源技术, 2024, 48(10): 2058-2065. |
| GAN Y J, QIU G X, ZENG Z X, et al. Simulation study of perovskite solar cells based on FASnI3 [J]. Chinese Journal of Power Sources, 2024, 48(10): 2058-2065 (in Chinese). | |
| [17] | YU W J, ZOU Y, WANG H T, et al. Breaking the bottleneck of lead-free perovskite solar cells through dimensionality modulation[J]. Chemical Society Reviews, 2024, 53(4): 1769-1788. |
| [18] | BURGELMAN M, DECOCK K, KHELIFI S, et al. Advanced electrical simulation of thin film solar cells[J]. Thin Solid Films, 2013, 535: 296-301. |
| [19] | HOSSAIN M K, RUBEL M H K, TOKI G F I, et al. Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks[J]. ACS Omega, 2022, 7(47): 43210-43230. |
| [20] | RAN C X, GAO W Y, LI J R, et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells[J]. Joule, 2019, 3(12): 3072-3087. |
| [21] | MISHRA K P, PANDEY B K, PANDEY S. Unveiling the potential of FASnI3 solar cells through advanced charge transport materials: a SCAPS-1D perspective[J]. Journal of Alloys and Compounds, 2024, 1006: 176283. |
| [22] | SUN Q D, SADHU A, LIE S, et al. Critical review of Cu-based hole transport materials for perovskite solar cells: from theoretical insights to experimental validation[J]. Advanced Materials, 2024, 36(31): 2402412. |
| [23] | 肖建敏, 袁吉仁, 王 鹏, 等. 铅基卤化物钙钛矿太阳电池的模拟研究[J]. 人工晶体学报, 2022, 51(6): 1051-1058. |
| XIAO J M, YUAN J R, WANG P, et al. Simulation of lead-based halide perovskite solar cells[J]. Journal of Synthetic Crystals, 2022, 51(6): 1051-1058 (in Chinese). | |
| [24] | SRIVASTAVA A, SAMAJDAR D P, SHARMA D. Plasmonic effect of different nanoarchitectures in the efficiency enhancement of polymer based solar cells: a review[J]. Solar Energy, 2018, 173: 905-919. |
| [25] | MINEMOTO T, MURATA M. Theoretical analysis on effect of band offsets in perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 133: 8-14. |
| [26] | WANG T Y, LOI H L, CAO J P, et al. High open circuit voltage over 1 V achieved in tin-based perovskite solar cells with a 2D/3D vertical heterojunction[J]. Advanced Science, 2022, 9(18): 2200242. |
| [27] | CHEN Y L, TONG Y, YANG F, et al. Modulating nucleation and crystal growth of tin perovskite films for efficient solar cells[J]. Nano Letters, 2024, 24(18): 5460-5466. |
| [28] | KAVITHA M V, SUDHEER SEBASTIAN K. Device modelling and performance enhancement of FASnI3-based perovskite solar cell with diverse, compatible charge transport layers[J]. Results in Optics, 2025, 18: 100783. |
| [29] | ZAI H C, YANG P F, SU J, et al. Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells[J]. Science, 2025, 387(6730): 186-192. |
| [30] | RANJAN R, ANAND N, TRIPATHI M N, et al. SCAPS study on the effect of various hole transport layer on highly efficient 31.86% eco-friendly CZTS based solar cell[J]. Scientific Reports, 2023, 13(1): 18411. |
| [1] | 李佳宁, 葛欣, 黄子轩, 刘振, 王鹏阳, 石标, 赵颖, 张晓丹. 自组装层修饰溅射氧化镍对刮涂制备的宽带隙钙钛矿太阳电池性能影响研究[J]. 人工晶体学报, 2023, 52(8): 1458-1466. |
| [2] | 黄孝坤, 杨爱军, 黎健生, 江琳沁, 邱羽. 基于CuS空穴传输材料的钙钛矿电池的性能研究[J]. 人工晶体学报, 2023, 52(3): 485-492. |
| [3] | 肖建敏, 袁吉仁, 王鹏, 邓新华, 黄海宾, 周浪. 铅基卤化物钙钛矿太阳电池的模拟研究[J]. 人工晶体学报, 2022, 51(6): 1051-1058. |
| [4] | 侯世欣;崔兴华;王鹏阳;黄茜;丁毅;李跃龙;张德坤;赵颖;张晓丹. 基于硫氰酸亚铜的n-i-p型钙钛矿太阳电池界面能级匹配及稳定性的初步研究[J]. 人工晶体学报, 2020, 49(9): 1590-1598. |
| [5] | 田瀛;吴燕;徐玉增;候敏娜;丁毅;侯国付;赵颖;张晓丹. 疏水载流子传输层上制备高效钙钛矿太阳电池的锚固策略[J]. 人工晶体学报, 2020, 49(5): 838-847. |
| [6] | 陈冠霖;韩灿;李仁杰;张杰;陈兵兵;石标;李跃龙;黄茜;赵颖;张晓丹. 钙钛矿太阳电池外量子效率模拟与优化[J]. 人工晶体学报, 2019, 48(8): 1480-1486. |
| [7] | 刘桂林;张忠扬;席曦;东为富;陈国庆;朱华新. 基于甲胺铅碘钙钛矿太阳电池中有效载流子产率的厚度拟合优化分析[J]. 人工晶体学报, 2019, 48(7): 1308-1313. |
| [8] | 刘琳;徐玉增;田瀛;杜亚雯;辛晨光;黄伟;安世崇;李跃龙;黄茜;侯国付;赵颖;张晓丹;丁毅. 甲基乙酸铵及氯苯在有机-无机卤化铅钙钛矿 结晶过程中的协同作用[J]. 人工晶体学报, 2019, 48(3): 386-393. |
| [9] | 郭升;侯福华;李跃龙;魏长春;赵颖;张晓丹. 原子层沉积二氧化钛薄膜对钙钛矿太阳电池性能的影响[J]. 人工晶体学报, 2018, 47(6): 1102-1112. |
| [10] | 杨永勇;汪礼胜;许伟康;张勇;王嘉绮;陈凤翔. CsGeI3空穴传输层平面异质结钙钛矿太阳电池的模拟优化[J]. 人工晶体学报, 2017, 46(5): 814-819. |
| [11] | 赵善真;丁毅;郭升;石标;姚鑫;侯福华;郑翠翠;张德坤;魏长春;王广才;赵颖;张晓丹. CuSCN空穴传输层工艺对钙钛矿电池性能的影响[J]. 人工晶体学报, 2017, 46(5): 753-758. |
| [12] | 朱世杰;丁毅;郑翠翠;侯福华;姚鑫;张德坤;魏长春;王广才;赵颖;张晓丹. SnCl4醇水溶液制备SnO2电子传输层及其在钙钛矿太阳电池中的应用[J]. 人工晶体学报, 2017, 46(10): 1885-1890. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS