
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (12): 2190-2199.DOI: 10.16553/j.cnki.issn1000-985x.2025.0121
收稿日期:2025-06-05
出版日期:2025-12-20
发布日期:2026-01-04
通信作者:
钱艳楠,博士,教授。E-mail:qianyannan@gdut.edu.cn
作者简介:黄成(2001—),男,湖北省人,硕士研究生。E-mail:1986355246@qq.com
基金资助:Received:2025-06-05
Online:2025-12-20
Published:2026-01-04
摘要: 碳基无空穴传输层CsPbI2Br钙钛矿太阳能电池因低廉的制备成本和优异的热稳定性而备受关注。然而,由于CsPbI2Br薄膜在快速结晶过程会产生高密度缺陷,引起陷阱辅助的非辐射复合与离子迁移问题,显著加剧器件能量损失与性能衰退。本研究采用简单实用的添加剂策略,通过4-氯苯磺酸钠(Na-4Cl-BZS)中阴(4Cl-BZS-)阳(Na+)离子的协同作用调控CsPbI2Br结晶、钝化缺陷。研究发现,4Cl-BZS-阴离子通过苯环两端的—SO3-和—Cl官能团与Pb2+形成配位结合,钝化低配位的Pb2+,提高卤素空位缺陷形成能,并促进钙钛矿多晶薄膜沿(100)晶面择优取向生长,从而获得高质量CsPbI2Br薄膜。此外,金属Na+通过间隙位掺杂显著提高了卤素离子的迁移势垒,提升钙钛矿晶体稳定性。得益于阴阳离子的协同作用,所制备的碳基无空穴传输层CsPbI2Br钙钛矿太阳能电池实现13.07%的光电转换效率,同时显著提升开路电压(1.18 V)和填充因子(74.26%)。
中图分类号:
黄成, 钱艳楠. 4-氯苯磺酸钠多功能添加剂实现高效碳基CsPbI2Br太阳能电池[J]. 人工晶体学报, 2025, 54(12): 2190-2199.
HUANG Cheng, QIAN Yannan. Multifunctional Additive of Sodium 4-Chlorobenzenesulfonate Enables Efficient Carbon-Based CsPbI2Br Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2025, 54(12): 2190-2199.
图1 (a)无添加剂和加入不同浓度添加剂后CsPbI2Br钙钛矿薄膜的XRD图谱和(100)晶面放大图;(b)CsPbI2Br钙钛矿(100)晶面的FWHM,以及(100)与(200)晶面的峰强比;(c)I-、Br-在有或无Na+离子间隙位掺杂的钙钛矿晶格中迁移路径的理论模型;(d)I-、Br-在迁移过程中体系的相对能量
Fig.1 (a) XRD patterns of CsPbI2Br perovskite films without additive and with different additive concentrations, along with the magnified view of the (100) crystal plane; (b) FWHM of the (100) crystal plane and the intensity ratio of the (100) to (200) planes of CsPbI2Br perovskite; (c) theoretical models of the migration pathways of I- and Br- in the perovskite lattice with and without interstitial doping of Na+; (d) relative energy of system during the migration process of I- and Br-
图2 CsPbI2Br钙钛矿薄膜表面SEM照片。(a)无添加剂;(b)加入1 mg/mL添加剂;(c)加入2 mg/mL添加剂;(d)加入4 mg/mL添加剂
Fig.2 Surface SEM images of CsPbI2Br perovskite films. (a) Without additive; (b) with 1 mg/mL additive; (c) with 2 mg/mL additive; (d) with 4 mg/mL additive
图3 (a)4Cl-BZS-的分子结构和静电势分布图;(b)4Cl-BZS-在CsPbI2Br钙钛矿(100)晶面的吸附构型及差分电荷密度;(c)卤素空位缺陷及4Cl-BZS-吸附后的构型
Fig.3 (a) Molecular structure and electrostatic potential map of 4Cl-BZS-; (b) adsorption configuration of 4Cl-BZS- on the (100) crystal plane of CsPbI2Br perovskite and the corresponding charge density difference; (c) configurations of halide vacancy defects and the structure after 4Cl-BZS- adsorption
| VI/eV | VBr/eV | |
|---|---|---|
| 吸附前 | -0.77 | -1.13 |
| —SO3-基团吸附后 | -0.43 | -0.25 |
| —Cl基团吸附后 | 0.39 | 0.14 |
表1 卤素空位缺陷形成能
Table 1 Formation energy of halide vacancies
| VI/eV | VBr/eV | |
|---|---|---|
| 吸附前 | -0.77 | -1.13 |
| —SO3-基团吸附后 | -0.43 | -0.25 |
| —Cl基团吸附后 | 0.39 | 0.14 |
图4 Na-4Cl-BZS添加剂与PbI2混合前、后液态13C NMR光谱(a)和FTIR光谱(b)
Fig.4 Liquid-state 13C NMR spectra (a) and FTIR spectra (b) of Na-4Cl-BZS additive before and after mixing with PbI2
图6 目标组和对照组CsPbI2Br钙钛矿薄膜的UV-Vis光谱(a)、稳态PL光谱(b)和TRPL光谱(c)
Fig.6 UV-Vis absorption spectra (a), steady-state PL spectra (b), and time-resolved photoluminescence (TRPL) spectra (c) of CsPbI2Br perovskite films for the target and control groups
图7 (a)基于加入不同浓度添加剂的CsPbI2Br钙钛矿薄膜制备的太阳能电池的J-V曲线;(b)对照组和目标组器件正向和反向扫描的J-V曲线
Fig.7 (a) J-V curves of solar cells based on CsPbI2Br perovskite films with different additive concentrations; (b) J-V curves of control and target devices under forward and reverse scanning
图8 对照组和目标组CsPbI2Br钙钛矿太阳能电池的莫特-肖特基曲线(a)、奈奎斯特曲线(b)、稳态电流密度和功率转换效率(c);(d)储存于25 ℃,10%~15%相对湿度的空气手套箱中未封装电池PCE随时间变化的曲线
Fig.8 Mott-Schottky plots (a), Nyquist plots (b), steady-state current density and power conversion efficiency (c) of control and target CsPbI2Br perovskite solar cells; (d) evolution of PCE over time stored in an air glovebox at 25 ℃ and 10%~15% relative humidity
| [1] | LU M H, DING J K, MA Q X, et al. Dual-site passivation by heterocycle functionalized amidinium cations toward high-performance inverted perovskite solar cells and modules[J]. Energy & Environmental Science, 2025, 18(12): 5973-5984. |
| [2] | LIM E L, YANG J X, WEI Z H. Inorganic CsPbI2Br halide perovskites: from fundamentals to solar cell optimizations[J]. Energy & Environmental Science, 2023, 16(3): 862-888. |
| [3] | LIU B B, BI H, HE D M, et al. Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells[J]. ACS Energy Letters, 2021, 6(7): 2526-2538. |
| [4] | MIN J, CHOI Y, KIM D, et al. Beyond imperfections: exploring defects for breakthroughs in perovskite solar cell research[J]. Advanced Energy Materials, 2024, 14(6): 2302659. |
| [5] | XIA J X, SOHAIL M, NAZEERUDDIN M K. Efficient and stable perovskite solar cells by tailoring of interfaces[J]. Advanced Materials, 2023, 35(31): 2211324. |
| [6] | MOHD YUSOFF A R B, VASILOPOULOU M, GEORGIADOU D G, et al. Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells[J]. Energy & Environmental Science, 2021, 14(5): 2906-2953. |
| [7] | AN Y D, ZHANG N, ZENG Z X, et al. Optimizing crystallization in wide-bandgap mixed halide perovskites for high-efficiency solar cells[J]. Advanced Materials, 2024, 36(17): 2306568. |
| [8] | MA C Q, KANG M C, LEE S H, et al. Photovoltaically top-performing perovskite crystal facets[J]. Joule, 2022, 6(11): 2626-2643. |
| [9] | CAO J, TAO S X, BOBBERT P A, et al. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration[J]. Advanced Materials, 2018, 30(26): 1707350. |
| [10] | KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. |
| [11] | BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. |
| [12] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
| [13] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
| [14] | MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. |
| [15] | LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789. |
| [16] | NAM J K, JUNG M S, CHAI S U, et al. Unveiling the crystal formation of cesium lead mixed-halide perovskites for efficient and stable solar cells[J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 2936-2940. |
| [17] | ZHAO Y P, YAVUZ I, WANG M H, et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations[J]. Nature Materials, 2022, 21(12): 1396-1402. |
| [18] | GUAN H L, ZHOU S, FU S Q, et al. Regulating crystal orientation via ligand anchoring enables efficient wide-bandgap perovskite solar cells and tandems[J]. Advanced Materials, 2024, 36(1): 2307987. |
| [19] | SONG J, XIE H B, LIM E L, et al. Progress and perspective on inorganic CsPbI2Br perovskite solar cells[J]. Advanced Energy Materials, 2022, 12(40): 2201854. |
| [20] | DU X Y, ZHANG J, SU H, et al. Synergistic crystallization and passivation by a single molecular additive for high-performance perovskite solar cells[J]. Advanced Materials, 2022, 34(33): 2204098. |
| [21] | LIU L D, ZHENG C, XU Z, et al. Manipulating electron density distribution of nicotinamide derivatives toward defect passivation in perovskite solar cells[J]. Advanced Energy Materials, 2023, 13(30): 2300610. |
| [22] | YANG G Y, YIN Y F, DONG K W, et al. Realizing uniform defect passivation via self-polymerization of benzenesulfonate molecules in perovskite photovoltaics[J]. Advanced Materials, 2025, 37(29): 2503435. |
| [23] | XIA J X, ZHANG R L, LUO J S, et al. Dipole evoked hole-transporting material p-doping by utilizing organic salt for perovskite solar cells[J]. Nano Energy, 2021, 85: 106018. |
| [24] | CHEN H, LIU C, XU J, et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands[J]. Science, 2024, 384(6692): 189-193. |
| [25] | LI X C, GAO S, WU X, et al. Bifunctional ligand-induced preferred crystal orientation enables highly efficient perovskite solar cells[J]. Joule, 2024, 8(11): 3169-3185. |
| [26] | HU T X, WANG Y X, LIU K, et al. Understanding the decoupled effects of cations and anions doping for high-performance perovskite solar cells[J]. Nano-Micro Letters, 2025, 17(1): 145. |
| [27] | LIU N M, DUAN J L, LI H, et al. Columnar macrocyclic molecule tailored grain cage to stabilize inorganic perovskite solar cells with suppressed halide segregation[J]. Advanced Energy Materials, 2024, 14(48): 2402443. |
| [28] | SONG J W, SHIN Y S, KIM M, et al. Post-treated polycrystalline SnO2 in perovskite solar cells for high efficiency and quasi-steady-state-IV stability[J]. Advanced Energy Materials, 2024, 14(38): 2401753. |
| [29] | WANG P, WANG H, MAO Y C, et al. Organic ligands armored ZnO enhances efficiency and stability of CsPbI2Br perovskite solar cells[J]. Advanced Science, 2020, 7(21): 2000421. |
| [30] | WANG G Q, CHANG J R, BI J Y, et al. Ionic liquid surface treatment-induced crystal growth of CsPbIBr2 perovskite for high-performance solar cells[J]. Crystal Growth & Design, 2024, 24(2): 817-825. |
| [31] | ZHAO Y Y, GAO L, WANG Q R, et al. Reinforced SnO2 tensile-strength and “buffer-spring” interfaces for efficient inorganic perovskite solar cells[J]. Carbon Energy, 2024, 6(6): 468. |
| [1] | 偰航, 靳志文. 薄膜制备方法及其结晶行为对卤化物钙钛矿X射线探测器成像性能的影响研究综述[J]. 人工晶体学报, 2025, 54(7): 1100-1120. |
| [2] | 于牧冰, 高岗, 赵勇彪, 朱嘉琦. 蓝光准二维钙钛矿结晶动力学调控及其电致发光器件研究[J]. 人工晶体学报, 2025, 54(7): 1132-1145. |
| [3] | 徐庄婕, 巴延双, 习鹤, 白福慧, 陈大正, 朱卫东, 张春福. 高质量钙钛矿单晶生长及其X射线探测性能表征[J]. 人工晶体学报, 2025, 54(7): 1229-1237. |
| [4] | 加雪峰, 阮妙, 叶林峰, 倪玉凤, 郭永刚, 高鹏. 咪唑基离子液修饰钙钛矿太阳能电池及其性能研究[J]. 人工晶体学报, 2025, 54(5): 864-872. |
| [5] | 王智超, 叶林峰, 阮妙, 杨超, 加雪峰, 倪玉凤, 郭永刚, 高鹏. 钙钛矿太阳电池中的脒基小分子界面修饰策略[J]. 人工晶体学报, 2025, 54(5): 873-881. |
| [6] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [7] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [8] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [9] | 贾梦江, 黄文奇, 王海, 郑军. 锗铅合金中非替位点缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(12): 2164-2172. |
| [10] | 林可, 张雅馨, 吴闻杰, 李琳, 林长浪, 曾黄军, 聂海宇, 李志强, 张戈, 李真, 张沛雄, 陈玮冬, 陈振强. 掺镱混晶的光谱增益带宽调控与激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1849-1857. |
| [11] | 焦思慧, 吴红萍, 俞洪伟. CsBa2ScB8O16:首例结构中同时含有零维[B3O6]基元和一维B—O链的稀土硼酸盐[J]. 人工晶体学报, 2024, 53(9): 1550-1559. |
| [12] | 王蕾蕾, 尹振华, 张蕴可, 刘磊, 陈名. 适用于太阳能电池的新型无铅四元硫碘化物优异光电性能的第一性原理研究[J]. 人工晶体学报, 2024, 53(5): 803-809. |
| [13] | 郝敬林, 邓丽芬, 王凯悦, 宋惠, 江南, 西村一仁. 高温高压合成掺杂金刚石研究进展[J]. 人工晶体学报, 2024, 53(2): 194-209. |
| [14] | 张盼, 庞国旺, 尹伟, 马亚斌, 张钧洲, 杨慧慧, 秦彦军. 高压下4H-SiC结构、电子和光学性质的理论研究[J]. 人工晶体学报, 2024, 53(12): 2104-2112. |
| [15] | 李宏, 廖鑫, 侯静, 徐众. 钙钛矿太阳能电池界面缺陷及其抑制方法[J]. 人工晶体学报, 2024, 53(1): 38-50. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS