[1] ZHANG Z X, ZHANG Y P, WANG C, et al. White light emission characteristics of Tb3+/Sm3+ Co-doped glass ceramics containing YPO4 nanocrystals[J]. Journal of Materials Science & Technology, 2017, 33(5): 432-437. [2] ZHANG Y L, FAN L C, WANG X F, et al. Fabrication and luminescence of highly transparent C12A7: Tb3+ glass-ceramics via in situ crystallization from aerodynamic levitation processed glasses[J]. Journal of Rare Earths, 2023, 41(11): 1696-1702. [3] SHOAIB M, ROOH G, RAJARAMAKRISHNA R, et al. Comparative study of Sm3+ ions doped phosphate based oxide and oxy-fluoride glasses for solid state lighting applications[J]. Journal of Rare Earths, 2019, 37(4): 374-382. [4] HUA Y B, YU J S. Double-excited states of charge transfer band and 4f-4f in single-phase K3Gd(VO4)2:Tb3+/Sm3+ phosphors with superior sensing sensitivity for potential luminescent thermometers[J]. Journal of Materials Science & Technology, 2021, 91: 148-159. [5] LIU H K, NIE K, ZHANG Y Y, et al. Structure and luminescence properties of color-tunable phosphor Sr2La3(SiO4)3F:Tb3+, Sm3+[J]. Journal of Rare Earths, 2023, 41(9): 1288-1294. [6] PAVANI K, NEVES A J, PINTO R J B, et al. BiLaWO6:Er3+/Tm3+/Yb3+ phosphor: study of multiple fluorescence intensity ratiometric thermometry at cryogenic temperatures[J]. Ceramics International, 2022, 48(21): 31344-31353. [7] SU J Y, ZHANG X Y, LI X, et al. Synthesis and luminescence properties of Yb3+, Tm3+ and Ho3+ co-doped SrGd2(WO4)2(MoO4)2 nano-crystal[J]. Advanced Powder Technology, 2020, 31(3): 1051-1059. [8] ZHAN J W, PENG S Y, ZHU Y X, et al. Phase transitions and optical properties of Tb3+ activated NaY(WO4)2 phosphors[J]. Ceramics International, 2024, 50(3): 4896-4906. [9] KRISHNAPRIYA T, JOSE A, ANNA JOSE T, et al. Structural and optical characterization of NaBi1-x(WO4)2:xSm3+phosphors for reddish orange light emitting applications[J]. Materials Letters, 2021, 295: 129864. [10] SINGH V, PATHAK M S, SINGH N, et al. Sol-gel derived green emitting Tb3+ doped Sr2La8(SiO4)6O2 phosphors[J]. Optik, 2018, 168: 475-480. [11] 崔瑞瑞, 陈 倩, 张 鑫, 等. Ba3Bi2(PO4)4:Tb3+荧光粉的制备与性能研究[J]. 人工晶体学报, 2022, 51(6): 1069-1075. CUI R R, CHEN Q, ZHANG X, et al. Preparation and property of Ba3Bi2(PO4)4:Tb3+ phosphors[J]. Journal of Synthetic Crystals, 2022, 51(6): 1069-1075 (in Chinese). [12] GUO Q F, LIAO L B, MEI L F, et al. Color-tunable photoluminescence phosphors of Ce3+ and Tb3+ Co-doped Sr2La8(SiO4)6O2 for UV w-LEDs[J]. Journal of Solid State Chemistry, 2015, 225: 149-154. [13] BAI M J, ZHANG Y, WAN H, et al. Tb3+/Sm3+ co-doped double perovskite: synthesis, exfoliation and luminescence properties[J]. Chemical Communications, 2022, 58(46): 6626-6629. [14] 田少华, 乔 峥, 孙明生. 白光LEDs用颜色可调型荧光粉Ca9Al(PO4)7:Tb3+, Sm3+的发光及能量传递[J]. 发光学报, 2019, 40(12): 1469-1477. TIAN S H, QIAO Z, SUN M S. Luminescence and energy transfer of tunable emission phosphor Ca9Al(PO4)7:Tb3+, Sm3+ for white LEDs[J]. Chinese Journal of Luminescence, 2019, 40(12): 1469-1477 (in Chinese). [15] 尹学爱, 吕树臣. Sr0.3Ca0.7MoO4:Tb3+, Eu3+荧光粉的颜色可调发光和温度传感特性[J]. 发光学报, 2023, 44(4): 607-614. YIN X A, LYU S C. Color-tunable luminescence and temperature sensing behavior of Sr0.3Ca0.7MoO4:Tb3+, Eu3+ phosphor[J]. Chinese Journal of Luminescence, 2023, 44(4): 607-614 (in Chinese). [16] SONG M J, ZHAO W, XUE J P, et al. Color-tunable luminescence and temperature sensing properties of a single-phase dual-emitting La2LiSbO6:Bi3+, Sm3+ phosphor[J]. Journal of Luminescence, 2021, 235: 118014. [17] 谢岚驰, 罗 新, 杨伟斌, 等. Sm3+掺杂Sr2YSbO6红色荧光粉的制备及发光性能研究[J]. 化工新型材料, 2022, 50(9): 84-88. XIE L C, LUO X, YANG W B, et al. Preparation and luminous performance analysis of Sm3+ doped Sr2YSbO6 red phosphor[J]. New Chemical Materials, 2022, 50(9): 84-88 (in Chinese). [18] 徐非凡, 张 永, 汤徐屹, 等. 橙红色荧光粉Ba2La8(SiO4)6O2:Sm3+的合成及光致发光特性研究[J]. 人工晶体学报, 2019, 48(10): 1873-1878. XU F F, ZHANG Y, TANG X Y, et al. Synthesis and photoluminescence properties of Ba2La8(SiO4)6O2:Sm3+ orange-red phosphors[J]. Journal of Synthetic Crystals, 2019, 48(10): 1873-1878 (in Chinese). [19] 南赏瑞, 付振东, 张云霄, 等. Tb3+, Sm3+掺杂的YNbO4多色荧光材料的制备及发光性能[J]. 无机化学学报, 2021, 37(2): 229-234. NAN S R, FU Z D, ZHANG Y X, et al. Preparation and luminescence performance of Tb3+, Sm3+ doped YNbO4 multicolor luminescence materials[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(2): 229-234 (in Chinese). [20] SONG M J, ZHAO W, RAN W G, et al. Multicolor tunable luminescence and energy transfer mechanism in a novel single-phase KBaGd(WO4)3:Tb3+, Eu3+ phosphor for NUV WLEDs[J]. Journal of Alloys and Compounds, 2019, 803: 1063-1074. [21] 阮文科, 谢木标. 白光LED用钨/钼酸盐红色发光材料研究进展[J]. 人工晶体学报, 2021, 50(1): 167-178. RUAN W K, XIE M B. Recent research progress on tungsten and molybdate red luminescent material for white LED[J]. Journal of Synthetic Crystals, 2021, 50(1): 167-178 (in Chinese). [22] 王萧慧, 李桂芳, 卫云鸽, 等. 形貌可控的NaCaGd(WO4)3:Eu3+红色荧光粉的制备及发光性能[J]. 无机化学学报, 2020, 36(10): 1881-1890. WANG X H, LI G F, WEI Y G, et al. Morphology-controlled synthesis and luminescence properties of red-emitting NaCaGd(WO4)3:Eu3+ phosphors[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1881-1890 (in Chinese). [23] ZHOU W W, SONG M J, ZHANG Y, et al. Color tunable luminescence and optical temperature sensing performance in a single-phased KBaGd(WO4)3:Dy3+, Eu3+ phosphor[J]. Optical Materials, 2020, 109: 110271. [24] LI G F, WANG Y, WEI Y G, et al. Structure, energy transfer, and luminescence properties of NaLaMgWO6:Tb3+, Eu3+ phosphors for solid-state lighting[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(5): 3835-3844. [25] 刘 艳, 姜营营, 刘桂霞, 等. NaY(WO4)2:Eu3+/Tb3+/Tm3+白色荧光粉的制备与发光性能[J]. 无机化学学报, 2013, 29(2): 277-282. LIU Y, JIANG Y Y, LIU G X, et al. Preparation and luminescence properties of NaY(WO4)2:Eu3+/Tb3+/Tm3+ white light phosphors[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(2): 277-282 (in Chinese). [26] SHI Z X, WANG J, GUAN X. Upconversion multicolor tuning of NaY(WO4)2:Tb3+ with Eu3+ doping[J]. Journal of Rare Earths, 2018, 36(9): 911-916. [27] DALAL J, KHATKAR A, DALAL M, et al. Characteristics of down conversion green emitting Ba3Bi2(PO4)4:Tb3+ nanosized particles for advanced illuminating devices[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(2): 1216-1226. [28] SONG M J, ZHAO W, RAN W G, et al. Synthesis, photoluminescence properties and potential applications of Eu3+ and Mn4+ activated SrLaMgNbO6 phosphors[J]. Materials Research Bulletin, 2020, 122: 110677. [29] 尹 民, 闻 军, 段昌奎. 稀土离子激活发光材料中能级跃迁的选择定则[J]. 发光学报, 2011, 32(7): 643-649. YIN M, WEN J, DUAN C K. Transition selection rules of rare-earth in optical materials[J]. Chinese Journal of Luminescence, 2011, 32(7): 643-649 (in Chinese). [30] 高 祥, 赵凤杰, 张子龙, 等. 近紫外光激发下KBaGd(MoO4)3:Er3+的下转换发光及温度传感特性[J]. 发光学报, 2022, 43(10): 1564-1573. GAO X, ZHAO F J, ZHANG Z L, et al. Down-conversion luminescence and temperature sensing characters of KBaGd(MoO4)3:Er3+ under NUV excitation[J]. Chinese Journal of Luminescence, 2022, 43(10): 1564-1573 (in Chinese). [31] 姜洪喜, 吕树臣. Sm3+掺杂NaLa(WO4)2单一基质白光荧光粉制备及发光性能[J]. 物理学报, 2021, 70(17): 177801. JIANG H X, LÜ S C. Synthesis and properties of Sm3+ doped NaLa(WO4)2 single matrix white phosphors[J]. Acta Physica Sinica, 2021, 70(17): 177801 (in Chinese). |