Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (5): 757-771.DOI: 10.16553/j.cnki.issn1000-985x.2024.0282
• Reviews • Previous Articles Next Articles
Received:
2024-11-09
Online:
2025-05-15
Published:
2025-05-28
CLC Number:
LI Shuai, ZHANG Lei. Research Progress on Near-Infrared Group Ⅳ-Ⅵ Semiconductor Quantum Dot Optical Fibers[J]. Journal of Synthetic Crystals, 2025, 54(5): 757-771.
Fig.3 Gain of PbS QD doped ring core fiber[17]. (a) Cross section of PbS QD doped ring core fiber; fiber gain spectrum under different pump powers (b) and signal powers (c), respectively
Fig.8 Fiber drawing and emission situation[24]. (a) The preform following fiber drawing; (b) the drop-off and the resulting black fibers with varying outer diameters; (c) emission spectra for a 532 nm CW laser pumping
Fig.12 Normalized PL spectra of PbS QD doped glass fibers heat treated at different temperatures for 10 h[31]. (a) Fiber FB; (b) fiber FM; (c) fiber FE
Fig.13 The core layer of the liquid core quartz fiber filled with PbSe QDs (a), and the output spectra of the PbSe liquid core fiber at different excited powers (b)[32]
Fig.14 The abs (①) and PL (②) spectra of PbSe QDs in TCE (a) and toluene (b), as well as the emission (③) spectra of PbSe QD optical fibers (④ curves are the Abs spectra of toluene and TCE solvents)[12]
Method | Pump wavelength/nm | Gain bandwidth/nm | Maximum gain/dB | Advantage | Disadvantage | Reference |
---|---|---|---|---|---|---|
MVCD (Soaking) | 980 | 1 537 | — | 实现硅基量子点光纤 | 掺杂工艺复杂 | [ |
MVCD (Atomization) | 1 064 | 1 540 | — | 简化掺杂工艺,提高掺杂程度和浓度均匀性 | — | [ |
MVCD (Ring core) | 980 | 1 500~1 600 | 8 | 解决光纤传输信号衰减和容量限制 | — | [ |
SGFC SGFC(PbS-MSN) | 980 980 | 1 310 1 550 | 10 8.09 | 工艺简单、与标准光纤兼容性好,抑制ASE噪声 | 增益较低,量子点涂覆层易受外界影响 | [ [ |
HFFS | 980 | 1 518~1 593 | 19 | 量子点荧光性能好、量子点分布均匀 | 光纤稳定性较差 | [ |
HTMDD HTMDD(Heat treatment) | 532 980 | 1 120~1 680 1 284~1 364 | — 20 | 减弱量子点不可控析出 | — | [ [ |
ITM | 808 | 1 550 | — | 对发光峰位进行大尺度或较为精细的调控 | 元素挥发及扩散导致光传输损耗 | [ |
GCI | 532 | 1 290 | — | 制备过程简单 | 光纤的封装比较难,很难投入生产 | [ |
Table 1 Synthesis methods and gain characteristics of Ⅳ-Ⅵ QD optical fibers
Method | Pump wavelength/nm | Gain bandwidth/nm | Maximum gain/dB | Advantage | Disadvantage | Reference |
---|---|---|---|---|---|---|
MVCD (Soaking) | 980 | 1 537 | — | 实现硅基量子点光纤 | 掺杂工艺复杂 | [ |
MVCD (Atomization) | 1 064 | 1 540 | — | 简化掺杂工艺,提高掺杂程度和浓度均匀性 | — | [ |
MVCD (Ring core) | 980 | 1 500~1 600 | 8 | 解决光纤传输信号衰减和容量限制 | — | [ |
SGFC SGFC(PbS-MSN) | 980 980 | 1 310 1 550 | 10 8.09 | 工艺简单、与标准光纤兼容性好,抑制ASE噪声 | 增益较低,量子点涂覆层易受外界影响 | [ [ |
HFFS | 980 | 1 518~1 593 | 19 | 量子点荧光性能好、量子点分布均匀 | 光纤稳定性较差 | [ |
HTMDD HTMDD(Heat treatment) | 532 980 | 1 120~1 680 1 284~1 364 | — 20 | 减弱量子点不可控析出 | — | [ [ |
ITM | 808 | 1 550 | — | 对发光峰位进行大尺度或较为精细的调控 | 元素挥发及扩散导致光传输损耗 | [ |
GCI | 532 | 1 290 | — | 制备过程简单 | 光纤的封装比较难,很难投入生产 | [ |
Fig.15 Energy levels of PbSe QDs and emission of PbSe QD fibers[34]. (a) Energy level diagram of the PbSe QD; (b) the variation of signal gain with wavelength at a fiber length of 1.36 m; (c) the variation of signal gain with fiber length
Fig.16 Signal gain of multi QD doped fiber amplifier[35]. (a) Signal gain and the noise figure as a function of wavelength; (b) signal gain and the bandwidth as a function of fiber length
Fig.17 Gain spectra of PbSe QD fiber amplifier under inhomogeneous model[36]. (a) Gain spectra under various standard deviations of size distribution functions; (b) gain spectra for the seventy numbers of signals with different input powers
Fig.18 Quantum dot doped single mode fiber laser[9]. (a) Structure diagram of fiber laser; (b) comparison of laser power between QDFL and YDFL at different fiber lengths
Fig.19 Emission spectra of QD-MMF-A[37]. (a) The spontaneous emission spectra under different pump power in which the direction of the arrow represents the increase of pump power from 5 to 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mW; (b) the normalized pump power dependent emission power
Fig.20 Stimulated emission and optical gain of PbSe QD liquid core fiber under strong pumping conditions[37]. Signal gain spectra under different pump powers from 10 to 42 (a), 50 (b) and 58 mW (c) with a spacing of 4 mW for fiber length are 5, 10 and 15 cm; (d) signal gain spectra under different fiber length (5, 10, 15, 25, 30, 40 cm) when pump power is fixed at 10 mW
Fig.21 Gain of QD single-mode fiber amplifier under two-level model[40]. (a) Comparison between the calculated QD gain and the actual gain; (b) gain variation under different pump power
Fig.22 Gain of PbSe QD/Raman hybrid fiber amplifie[42]. (a) The schematic diagram of the hybrid PbSe-QD/Raman amplifier used in the simulation; (b) dependence of mixed amplifier gain on PbSe QD pump power
Theoretical models and fiber types | Doping method | Pump wavelength/nm | Gain bandwidth/nm | Maximum gain/dB | Reference |
---|---|---|---|---|---|
Three energy level QD-SMF-A | Single size | 1 460~1 580 | 2 000 | 33.5 | [ |
Single size | 980 | 62 | 20 | [ | |
Two sizes | 980 | 122 | 20 | [ | |
Three sizes Four sizes | 980 980 | 200 277 | 20 20 | [ [ | |
Three energy level Inhomogeneous model for QD-SMF-A | Multi size | 1 540 | 92 | 35 | [ |
Three energy level QD-SMF-L | Single size | 1 550 | — | 2.7/m | [ |
Three energy level QD-MMF-A | Single size | 532 | 200~300 | 30 | [ |
Two energylevel QD-SMF-A | Single size | 1 100 | 500 | 22 | [ |
Three energy level QD/Raman-SMF-A | Three sizes | 980 | 100 | 29 | [ |
Table 2 Theoretical calculation of optical gain of QD fiber
Theoretical models and fiber types | Doping method | Pump wavelength/nm | Gain bandwidth/nm | Maximum gain/dB | Reference |
---|---|---|---|---|---|
Three energy level QD-SMF-A | Single size | 1 460~1 580 | 2 000 | 33.5 | [ |
Single size | 980 | 62 | 20 | [ | |
Two sizes | 980 | 122 | 20 | [ | |
Three sizes Four sizes | 980 980 | 200 277 | 20 20 | [ [ | |
Three energy level Inhomogeneous model for QD-SMF-A | Multi size | 1 540 | 92 | 35 | [ |
Three energy level QD-SMF-L | Single size | 1 550 | — | 2.7/m | [ |
Three energy level QD-MMF-A | Single size | 532 | 200~300 | 30 | [ |
Two energylevel QD-SMF-A | Single size | 1 100 | 500 | 22 | [ |
Three energy level QD/Raman-SMF-A | Three sizes | 980 | 100 | 29 | [ |
1 | CARUGE J M, HALPERT J E, WOOD V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics, 2008, 2(4): 247-250. |
2 |
PARK M, SONG J Y, AN M, et al. Colloidal quantum dot light-emitting diodes employing solution-processable tin dioxide nanoparticles in an electron transport layer[J]. RSC Advances, 2020, 10(14): 8261-8265.
DOI PMID |
3 | 张 俊, 张 军, 耿俊杰, 等. PbS量子点在荧光集光太阳能光伏器件上的应用[J]. 光学学报, 2012, 32(1): 123003. |
ZHANG J, ZHANG J, GENG J J, et al. Application of PbS quantum dots in luminescent solar concentrator[J]. Acta Optica Sinica, 2012, 32(1): 123003 (in Chinese). | |
4 | YUN S H, KWOK S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 2017, 1: 0008. |
5 | TACHAN Z, SHALOM M, HOD I, et al. PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells[J]. The Journal of Physical Chemistry C, 2011, 115(13): 6162-6166. |
6 | MOREELS I, LAMBERT K, DE MUYNCK D, et al. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots[J]. Chemistry of Materials, 2007, 19(25): 6101-6106. |
7 | 程同蕾, 尹智远, 刘伟, 等. 稀土离子掺杂碲酸盐上转换发光玻璃及光纤的荧光传感应用[J]. 激光与光电子学进展, 2022, 59(15): 156-167. |
CHENG T, YIN Z, LIU W, et al. Rare earth ion-doped tellurite upconversion luminescent glass and optical fiber for fluorescence sensing applications[J]. Laser & Optoelectronics Progress, 2022, 59(15): 156-167 (in Chinese). | |
8 | DU H, CHEN C, KRISHNAN R, et al. Optical properties of colloidal PbSe nanocrystals[J]. Nano Letters, 2002, 2(11): 1321-1324. |
9 | CHENG C, WEI K H, CHENG X Y. A simulation of PbSe quantum dot-doped fiber laser[C]// 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics. August 30-3, 2009, Shanghai, China. IEEE, 2009: 1-2. |
10 | 许周速, 冯文举, 刘小峰, 等. 近红外Ⅳ-Ⅵ族半导体量子点掺杂玻璃及光纤研究进展[J]. 激光与光电子学进展, 2021, 58(15): 1516018. |
XU Z S, FENG W J, LIU X F, et al. Near infrared Ⅳ-Ⅵ semiconductor quantum dot-doped glasses and fibers[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516018 (in Chinese). | |
11 |
ZHANG Y, DAI Q Q, LI X B, et al. Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission[J]. Nanoscale Research Letters, 2010, 5(8): 1279-1283.
DOI PMID |
12 | ZHANG L, ZHANG Y, KERSHAW S V, et al. Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths[J]. Nanotechnology, 2014, 25(10): 105704. |
13 | WATEKAR P R, LIN A X, JU S, et al. 1537 nm emission upon 980 nm pumping in PbSe quantum dots doped optical fiber[C]// OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference. February 24-28, 2008, San Diego, CA, USA. IEEE, 2008: 1-3. |
14 | JU S, WATEKAR P R, KIM C J, et al. Particle size control of PbTe quantum dots incorporated in the germano-silicate glass optical fiber by heat treatment[J]. Journal of Non-Crystalline Solids, 2010, 356(43): 2273-2276. |
15 |
JU S, WATEKAR P R, HAN W T. Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity[J]. Optics Express, 2011, 19(3): 2599.
DOI PMID |
16 | XU L M, SHANG Y N, YANG J H, et al. Orbital-angular-momentum optical amplifier based on PbS-doped ring-core fiber[J]. Frontiers in Physics, 2020, 8: 198. |
17 | 徐灵敏, 商娅娜, 陈振宜. 基于PbS掺杂环形芯光纤的光放大器[J]. 光通信技术, 2020, 44(11): 35-38. |
XU L M, SHANG Y N, CHEN Z Y. Optical amplifier based on PbS doped ring core fiber[J]. Optical Communication Technology, 2020, 44(11): 35-38 (in Chinese). | |
18 |
PANG F F, SUN X L, GUO H R, et al. A PbS quantum dots fiber amplifier excited by evanescent wave[J]. Optics Express, 2010, 18(13): 14024-14030.
DOI PMID |
19 | 范美端, 严钰杨, 周 爽, 等. 基于介孔二氧化硅和硫化铅量子点结合的光纤放大器[J]. 光通信技术, 2021, 45(11): 59-62. |
FAN M D, YAN Y Y, ZHOU S, et al. Optical fiber amplifier based on composites of mesoporous silica and PbS quantum dots[J]. Optical Communication Technology, 2021, 45(11): 59-62 (in Chinese). | |
20 | 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器[J]. 物理学报, 2006, 55(8): 4139-4144. |
CHENG C, ZHANG H. A semiconductor nanocrystal PbSe quantum dot fiber amplifier[J]. Acta Physica Sinica, 2006, 55(8): 4139-4144 (in Chinese). | |
21 | 程 成, 林彦国, 严金华. 以UV胶为纤芯本底的CdSe/ZnS量子点光纤光致荧光光谱的传光特性[J]. 光子学报, 2011, 40(6): 888-893. |
CHENG C, LIN Y G, YAN J H. Propagation characteristic of photoluminescence spectra of CdSe/ZnS-quantum-dot doped fiber in an ultraviolet curable adhesive background[J]. Acta Photonica Sinica, 2011, 40(6): 888-893 (in Chinese). | |
22 | 吴昌斌. PbS量子点近红外宽带光纤通信放大器实验研究[D]. 杭州: 浙江工业大学, 2018. |
WU C B. Experimental study on PbS quantum dot near infrared broadband optical fiber communication amplifier[D]. Hangzhou: Zhejiang University of Technology, 2018 (in Chinese). | |
23 | CHENG C, BO J F, YAN J H, et al. Experimental realization of a PbSe-quantum-dot doped fiber laser[J]. IEEE Photonics Technology Letters, 2013, 25(6): 572-575. |
24 | BHARDWAJ A, HREIBI A, LIU C, et al. PbS quantum dots doped glass fibers for optical applications[C]// 2012 Conference on Lasers and Electro-Optics (CLEO). May 6-11, 2012, San Jose, CA, USA. IEEE, 2012: 1-2. |
25 | CHENG C, JIANG H L, MA D W, et al. An optical fiber glass containing PbSe quantum dots[J]. Optics Communications, 2011, 284(19): 4491-4495. |
26 | 程 成, 黄 吉, 徐 军. 熔融二次热处理优化制备近红外钠硼铝硅酸盐PbSe量子点荧光玻璃[J]. 光学学报, 2015, 35(5): 516004. |
CHENG C, HUANG J, XU J. Near-infrared PbSe quantum dots-doped sodium-aluminum-borosilicate silicate glass prepared optimally by melting method of two-step heat treatment[J]. Acta Optica Sinica, 2015, 35(5): 516004 (in Chinese). | |
27 | 程 成, 席子扬, 姚建华. PbSe量子点硅酸盐玻璃光纤的制备及光纤光致荧光光谱特性[J]. 光子学报, 2017, 46(6): 616001. |
CHENG C, XI Z Y, YAO J H. Preparation of PbSe-quantum-dot-doped-silicate glass fiber and the fiber photoluminescence spectrum[J]. Acta Photonica Sinica, 2017, 46(6): 616001 (in Chinese). | |
28 | 程 成, 汪方杰. 基于钠铝硼硅酸盐玻璃的近红外宽带PbSe量子点光纤放大器的实验实现[J]. 光学学报, 2018, 38(11): 1106002. |
CHENG C, WANG F J. Experimental realization of PbSe quantum-dot fiber amplifier in NIR broad-waveband based on sodium-aluminum-borosilicate silicate glass[J]. Acta Optica Sinica, 2018, 38(11): 1106002 (in Chinese). | |
29 | FANG Z J, ZHENG S P, PENG W C, et al. Fabrication and characterization of glass-ceramic fiber-containing Cr3+-doped ZnAl2O4 nanocrystals[J]. Journal of the American Ceramic Society, 2015, 98(9): 2772-2775. |
30 | 王 伟, 古 权, 陈钦鹏, 等. 中红外宽带荧光PbSe量子点掺杂玻璃光纤研究[J]. 中国激光, 2022, 49(1): 0101013. |
WANG W, GU Q, CHEN Q P, et al. Investigation of PbSe quantum dot-doped glass fibers with broadband mid-infrared emission[J]. Chinese Journal of Lasers, 2022, 49(1): 0101013 (in Chinese). | |
31 | 黄雄健. 近红外宽带荧光PbS量子点掺杂玻璃与光纤研究[D]. 广州: 华南理工大学, 2018. |
HUANG X J. Investigation of PbS quantum dot-doped glasses and glass fibers with broadband near-infrared emission[D]. Guangzhou: South China University of Technology, 2018 (in Chinese). | |
32 |
HREIBI A, GÉRÔME F, AUGUSTE J L, et al. Semiconductor-doped liquid-core optical fiber[J]. Optics Letters, 2011, 36(9): 1695-1697.
DOI PMID |
33 | 张 蕾. 胶体PbSe量子点掺杂液芯光纤的发光性质研究[D]. 长春: 吉林大学, 2014. |
ZHANG L. Study on the emission properties of colloidal PbSe quantum dot doped liquid core optical fibers[D]. Changchun: Jilin University, 2014 (in Chinese). | |
34 | CHENG C, ZHANG H. Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier[J]. Optics Communications, 2007, 277(2): 372-378. |
35 | CHENG C. A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise[J]. Journal of Lightwave Technology, 2008, 26(11): 1404-1410. |
36 | BAHRAMPOUR A R, ROOHOLAMINI H, RAHIMI L, et al. An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier[J]. Optics Communications, 2009, 282(22): 4449-4454. |
37 | ZHANG L, ZHANG Y, WU H, et al. Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber[J]. Journal of Nanoparticle Research, 2013, 15(10): 2000. |
38 | 张 冰, 张 磊, 张 蕾. PbSe量子点液芯光纤的温度效应[J]. 发光学报, 2017, 38(5): 623. |
ZHANG B, ZHANG L, ZHANG L. Temperature effect on PbSe quantum dot-doped liquid core fiber[J]. Chinese Journal of Luminescence, 2017, 38(5): 623 (in Chinese). | |
39 | ZHANG L, ZHANG B, LI S, et al. Stimulated emission and optical gain in PbSe quantum dot-doped liquid-core optical fiber based on multi-exciton state[J]. Optics Communications, 2016, 369: 171-178. |
40 | JIANG C. Ultrabroadband gain characteristics of a quantum-dot-doped fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 140-144. |
41 | HUANG W, CHI Y-Z, WANG X, et al. Tunable infrared luminescence and optical amplification in PbS doped glasses[J]. Chinese Physics Letters, 2008, 25(7): 2518-2520. |
42 | MAHRAN O, EL-Nohy N, IBRAHIM H. A numerical investigation of the gain profile of a PbSe quantum dot/Raman hybrid amplifier[J]. Optoelectronics and Advanced Materials-Rapid Communications, 2021, 15: 213-222. |
[1] | SUN Rujun, ZHANG Jinghui, LI Yifan, HAO Yue, ZHANG Jincheng. Review on Mg Doping of Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(3): 361-370. |
[2] | YANG Jianghao, HUANG Xinshuai, LAN Chenhui, WEI Qinhua, QIN Laishun. Growth and Luminescence Properties of Cs4EuI6∶Sm Near-Infrared Scintillation Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 627-633. |
[3] | CHEN Peiran, JIAO Teng, CHEN Wei, DANG Xinming, DIAO Zhaoti, LI Zhengda, HAN Yu, YU Han, DONG Xin. Fabrication and Characteristics of p-Si/n-Ga2O3 Heterojunction [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 73-81. |
[4] | PENG Qianwen, JI Xiang. Effect of Annealing Temperature on Electrical Properties of BCZT Epitaxial Films and Its Conductivity Mechanism [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 82-89. |
[5] | CHEN Shaohua, MU Wenxiang, ZHANG Jin, DONG Xuyang, LI Yang, JIA Zhitai, TAO Xutang. Optical and Electrical Properties of Ni-Doped β-Ga2O3 Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1373-1377. |
[6] | ZHAO Junyi, LIU Runze, LOU Yiyang, HUO Yongheng. Basic Materials and Devices of the Deterministic Solid-State Quantum Light Sources [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 960-981. |
[7] | LIU Xuan, GUO Feifei, LONG Wei, XI Zengzhe, HE Aiguo, XU Guiyu. Leakage Current Characteristics and Magnetic Properties of Gd2O3 Doped BiFeO3 Ceramics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1161-1167. |
[8] | GENG Fangjuan, YANG Lei, ZHU Jiaqi. Effect of Annealing Method and Temperature on Structure, Morphology and Photoelectric Properties of CuI Thin Films by Layer by Layer Iodization [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(5): 842-848. |
[9] | YANG Guang, LIU Xiaoshuang, LI Jiajun, XU Lingbo, CUI Can, PI Xiaodong, YANG Deren, WANG Rong. Dislocations in 4H Silicon Carbide Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1673-1690. |
[10] | WU Yuanmeng, HU Junjie, WANG Miao, YI Juemin, ZHANG Yumin, WANG Jianfeng, XU Ke. Optical Anisotropy of Non-Polar Surfaces of Fe-Doped GaN Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 996-1002. |
[11] | HU Xiaojun, ZHENG Yuhao, CHEN Chengke, LU Shaohua, JIANG Meiyan, LI Xiao. Doping, Surface/Interface Regulation and Properties of Nanocrystalline Diamond Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(5): 865-874. |
[12] | CUI Jinghe, JIANG Quanwei, GAO Mangmang, LIANG Sen. Mechanism of Phase Change Temperature of VO2 Thin Films by Doping Germanium [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(4): 666-672. |
[13] | LI Dongke, CHEN Jiaming, SUN Teng, ZHAI Zhangyin, CHEN Guibin. Microstructure and Optical-Electrical Properties of Phosphorus/Boron Co-Doped Silicon Nanocrystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(1): 35-41. |
[14] | XIAO Jing, CHANG Shuangju, ZHAO Li, ZHU Yabin, CHEN Yunlin. Optical and Electrical Properties of High Doping Zn/Mg LiNbO3 Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1648-1654. |
[15] | NIU Ben, WU Jun, WANG Kaifeng, HUANG Chengbin, FU Hao, ZHU Bolin, LI Taotao, YAO Yagang. Structure and Transparent Conductive Properties of (Ti/ZnO)N Compositionally Modulated Nano Multilayer Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(8): 1478-1484. |
Viewed | ||||||
Full text 46
|
|
|||||
Abstract |
|
|||||