[1] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504. [2] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [3] LYONS J L. A survey of acceptor dopants for β-Ga2O3[J]. Semiconductor Science and Technology, 2018, 33(5): 05LT02. [4] VARLEY J B, WEBER J R, JANOTTI A, et al. Oxygen vacancies and donor impurities in β-Ga2O3[J]. Applied Physics Letters, 2010, 97(14): 142106. [5] VARLEY J B, JANOTTI A, FRANCHINI C, et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides[J]. Physical Review B, 2012, 85(8): 081109. [6] KANANEN B E, GILES N C, HALLIBURTON L E, et al. Self-trapped holes in β-Ga2O3 crystals[J]. Journal of Applied Physics, 2017, 122(21): 215703. [7] CHENG L, ZHU Y M, WANG W L, et al. Strong electron-phonon coupling in β-Ga2O3: a huge broadening of self-trapped exciton emission and a significant red shift of the direct bandgap[J]. The Journal of Physical Chemistry Letters, 2022, 13(13): 3053-3058. [8] 何俊洁, 矫淑杰, 聂伊尹, 等. β-Ga2O3的p型掺杂研究进展[J]. 发光学报, 2024, 45(4): 557-567. HE J J, JIAO S J, NIE Y Y, et al. Research progress of p-type doping of β-Ga2O3[J]. Chinese Journal of Luminescence, 2024, 45(4): 557-567(in Chinese). [9] 查显弧, 万玉喜, 张道华. β相氧化镓p型导电研究进展[J]. 人工晶体学报, 2025, 54(2): 177-189. ZHA X H, WAN Y X, ZHANG D H. Research progress of p-type conductivity of β-phase gallium oxide[J]. Journal of Synthetic Crystals, 2025, 54(2) :177-189 (in Chinese). [10] ZHANG J C, DONG P F, DANG K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes[J]. Nature Communications, 2022, 13(1): 3900. [11] INGEBRIGTSEN M E, VARLEY J B, KUZNETSOV A Y, et al. Iron and intrinsic deep level states in Ga2O3[J]. Applied Physics Letters, 2018, 112(4): 042104. [12] PEELAERS H, LYONS J L, VARLEY J B, et al. Deep acceptors and their diffusion in Ga2O3[J]. APL Materials, 2019, 7(2): 022519. [13] GHADI H, MCGLONE J F, CORNUELLE E, et al. Identification and characterization of deep nitrogen acceptors in β-Ga2O3 using defect spectroscopies[J]. APL Materials, 2023, 11(11): 111110. [14] GHADI H, CORNUELLE E, MCGLONE J F, et al. Comprehensive characterization of nitrogen-related defect states in β-Ga2O3 using quantitative optical and thermal defect spectroscopy methods[J]. APL Materials, 2024, 12(9): 091111. [15] GUSTAFSON T D, JESENOVEC J, LENYK C A, et al. Zn acceptors in β-Ga2O3 crystals[J]. Journal of Applied Physics, 2021, 129(15): 155701. [16] GUSTAFSON T D, GILES N C, HOLLOWAY B C, et al. Cu2+ and Cu3+ acceptors in β-Ga2O3 crystals: a magnetic resonance and optical absorption study[J]. Journal of Applied Physics, 2022, 131(6): 065702. [17] GUSTAFSON T D, GILES N C, HOLLOWAY B C, et al. Transition-metal ions in β-Ga2O3 crystals: identification of Ni acceptors[J]. Journal of Applied Physics, 2022, 132(18): 185705. [18] SEYIDOV P, VARLEY J B, SHEN J X, et al. Charge state transition levels of Ni in β-Ga2O3 crystals from experiment and theory: an attractive candidate for compensation doping[J]. Journal of Applied Physics, 2023, 134(20): 205701. [19] SEYIDOV P, VARLEY J B, GALAZKA Z, et al. Cobalt as a promising dopant for producing semi-insulating β-Ga2O3 crystals: charge state transition levels from experiment and theory[J]. APL Materials, 2022, 10(11): 111109. [20] ZHOU H, YAN Q L, ZHANG J C, et al. High-performance vertical β-Ga2O3 Schottky barrier diode with implanted edge termination[J]. IEEE Electron Device Letters, 2019, 40(11): 1788-1791. [21] DHEENAN A V, MCGLONE J F, KALARICKAL N K, et al. β-Ga2O3 MESFETs with insulating Mg-doped buffer grown by plasma-assisted molecular beam epitaxy[J]. Applied Physics Letters, 2022, 121(11): 113503. [22] ZENG K, SOMAN R, BIAN Z L, et al. Vertical Ga2O3 MOSFET with magnesium diffused current blocking layer[J]. IEEE Electron Device Letters, 2022, 43(9): 1527-1530. [23] CHU S Y, YEH T H, LEE C T, et al. Mg-doped beta-Ga2O3 films deposited by plasma-enhanced atomic layer deposition system for metal-semiconductor-metal ultraviolet C photodetectors[J]. Materials Science in Semiconductor Processing, 2022, 142: 106471. [24] CHEN J W, TANG H L, LIU B, et al. High-performance X-ray detector based on single-crystal β-Ga2O3∶ Mg[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2879-2886. [25] LENYK C A, GUSTAFSON T D, BASUN S A, et al. Experimental determination of the (0/-) level for Mg acceptors in β-Ga2O3 crystals[J]. Applied Physics Letters, 2020, 116(14): 142101. [26] NEAL A T, MOU S, RAFIQUE S, et al. Donors and deep acceptors in β-Ga2O3[J]. Applied Physics Letters, 2018, 113(6): 062101. [27] HARWIG T, SCHOONMAN J. Electrical properties of β-Ga2O3 single crystals. Ⅱ[J]. Journal of Solid State Chemistry, 1978, 23(1/2): 205-211. [28] GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191. [29] RITTER J R, HUSO J, DICKENS P T, et al. Compensation and hydrogen passivation of magnesium acceptors in β-Ga2O3[J]. Applied Physics Letters, 2018, 113(5): 052101. [30] BLEVINS J D, STEVENS K, LINDSEY A, et al. Development of large diameter semi-insulating gallium oxide (Ga2O3) substrates[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(4): 466-472. [31] GHADBEIGI L, SUN R J, JESENOVEC J, et al. Electronic and ionic conductivity in β-Ga2O3 single crystals[J]. Journal of Applied Physics, 2022, 131(8): 085102. [32] GAO X, MA K K, JIN Z, et al. Characteristics of 4-inch (100) oriented Mg-doped β-Ga2O3 bulk single crystals grown by a casting method[J]. Journal of Alloys and Compounds, 2024, 987: 174162. [33] WONG M H, LIN C H, KURAMATA A, et al. Acceptor doping of β-Ga2O3 by Mg and N ion implantations[J]. Applied Physics Letters, 2018, 113(10): 102103. [34] ZHANG Y N, ZHANG J C, FENG Z Q, et al. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 3948-3953. [35] ZENG K, BIAN Z L, SINHA N, et al. Simultaneous drive-in of Mg and disassociation of Mg-H complex in Ga2O3 by oxygen annealing achieving remarkable current blocking[J]. Applied Physics Letters., 2024 [36] FENG Z X, BHUIYAN A F M A U, KALARICKAL N K, et al. Mg acceptor doping in MOCVD (010) β-Ga2O3[J]. Applied Physics Letters, 2020, 117(22): 222106. [37] MAUZE A, ZHANG Y W, ITOH T, et al. Mg doping and diffusion in (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy[J]. Journal of Applied Physics, 2021, 130(23): 235301. [38] SAHA S, MENG L Y, BHUIYAN A F M A U, et al. Electrical characteristics of in situ Mg-doped β-Ga2O3 current-blocking layer for vertical devices[J]. Applied Physics Letters, 2023, 123(13): 132105. [39] EBRAHIMI-DARKHANEH H, SHEKARNOUSH M, ARELLANO-JIMENEZ J, et al. High-quality Mg-doped p-type Ga2O3 crystalline thin film by pulsed laser[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(31): 24244-24259. [40] BI X Y, WU Z P, HUANG Y Q, et al. Stabilization and enhanced energy gap by Mg doping in ε-phase Ga2O3 thin films[J]. AIP Advances, 2018, 8(2): 025008. [41] QIAN Y P, GUO D Y, CHU X L, et al. Mg-doped p-type β-Ga2O3 thin film for solar-blind ultraviolet photodetector[J]. Materials Letters, 2017, 209: 558-561. [42] FAN W T, LI S R, REN W, et al. Synthesis of β-Ga2O3∶Mg thin films by electron beam evaporation and postannealing[J]. Materials, 2024, 17(19): 4931. |