Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (6): 960-969.DOI: 10.16553/j.cnki.issn1000-985x.2024.0321
• Research Articles • Previous Articles Next Articles
YU Chao1(), ZHANG Bo1, WANG Qiqi2, WANG Xi2, HU Yunan2, LIANG Xiaoyan1(
), ZHANG Jijun1, MIN Jiahua1, WANG Linjun1
Received:
2024-12-23
Online:
2025-06-20
Published:
2025-06-23
CLC Number:
YU Chao, ZHANG Bo, WANG Qiqi, WANG Xi, HU Yunan, LIANG Xiaoyan, ZHANG Jijun, MIN Jiahua, WANG Linjun. Fine Modulation of Internal Point Defects in CZT Crystals Grown by the Traveling Heater Method[J]. Journal of Synthetic Crystals, 2025, 54(6): 960-969.
Annealing atmosphere | Tsources/℃ | Tsample/℃ | Annealing time/h | Sample label |
---|---|---|---|---|
Saturated-Cd vapor | — | — | 0 | CZT-1 |
600 | 650 | 1 | CZT-2 | |
600 | 650 | 3 | CZT-3 | |
600 | 650 | 6 | CZT-4 | |
600 | 650 | 24 | CZT-5 | |
Saturated-Te vapor | 600 | 650 | 72 | CZT-5(72Te) |
600 | 650 | 150 | CZT-5(150Te) |
Table 1 Annealing parameters
Annealing atmosphere | Tsources/℃ | Tsample/℃ | Annealing time/h | Sample label |
---|---|---|---|---|
Saturated-Cd vapor | — | — | 0 | CZT-1 |
600 | 650 | 1 | CZT-2 | |
600 | 650 | 3 | CZT-3 | |
600 | 650 | 6 | CZT-4 | |
600 | 650 | 24 | CZT-5 | |
Saturated-Te vapor | 600 | 650 | 72 | CZT-5(72Te) |
600 | 650 | 150 | CZT-5(150Te) |
Trap type | Trap name | ET/eV | σn/cm2 | NT/cm-3, CZT-1 | NT/cm-3, CZT-2 | NT/cm-3, CZT-3 | NT/cm-3, CZT-4 | NT/cm-3, CZT-5 |
---|---|---|---|---|---|---|---|---|
Acceptor | (InCd+-VCd2-)- | 0.15 | 2.95×10-24 | 4.37×1013 | 3.89×1013 | 1.23×1013 | 7.13×1012 | 4.54×1012 |
VCd2- | 0.38 | 4.76×10-20 | 7.35×1012 | 2.68×1012 | 9.85×1011 | 5.33×1011 | — | |
Donor | Cdi2+ | 0.55 | 5.82×10-19 | — | — | — | — | 4.49×1013 |
TeCd2+ | 0.74 | 9.34×10-16 | 4.47×1013 | 4.28×1013 | 3.23×1013 | 1.56×1013 | 4.91×1012 | |
Total defect concentration | 9.58×1013 | 8.44×1013 | 4.56×1013 | 2.33×1013 | 5.44×1013 |
Table 2 Point defect parameters of samples after Cd annealing for different time
Trap type | Trap name | ET/eV | σn/cm2 | NT/cm-3, CZT-1 | NT/cm-3, CZT-2 | NT/cm-3, CZT-3 | NT/cm-3, CZT-4 | NT/cm-3, CZT-5 |
---|---|---|---|---|---|---|---|---|
Acceptor | (InCd+-VCd2-)- | 0.15 | 2.95×10-24 | 4.37×1013 | 3.89×1013 | 1.23×1013 | 7.13×1012 | 4.54×1012 |
VCd2- | 0.38 | 4.76×10-20 | 7.35×1012 | 2.68×1012 | 9.85×1011 | 5.33×1011 | — | |
Donor | Cdi2+ | 0.55 | 5.82×10-19 | — | — | — | — | 4.49×1013 |
TeCd2+ | 0.74 | 9.34×10-16 | 4.47×1013 | 4.28×1013 | 3.23×1013 | 1.56×1013 | 4.91×1012 | |
Total defect concentration | 9.58×1013 | 8.44×1013 | 4.56×1013 | 2.33×1013 | 5.44×1013 |
Ratio | CZT-1 | CZT-2 | CZT-3 | CZT-4 | CZT-5 |
---|---|---|---|---|---|
28.82 | 20.25 | 14.95 | 11.67 | 4.87 |
Table 3 Area ratio of D1 and D2 of samples after Cd-vapor annealing for different time
Ratio | CZT-1 | CZT-2 | CZT-3 | CZT-4 | CZT-5 |
---|---|---|---|---|---|
28.82 | 20.25 | 14.95 | 11.67 | 4.87 |
Sample number | CZT-1 | CZT-2 | CZT-3 | CZT-4 |
---|---|---|---|---|
μ/(cm2·V-1·s-1) | 548 | 645 | 670 | 697 |
η/% | 52 | 71 | 85 | 100 |
Table 4 Electron mobility and charge collection efficiency of samples after Cd annealing for different time
Sample number | CZT-1 | CZT-2 | CZT-3 | CZT-4 |
---|---|---|---|---|
μ/(cm2·V-1·s-1) | 548 | 645 | 670 | 697 |
η/% | 52 | 71 | 85 | 100 |
1 | ALAM M D, NASIM S S, HASAN S. Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring[J]. Progress in Nuclear Energy, 2021, 140: 103918. |
2 | SCHLESINGER T E, TONEY J E, YOON H, et al. Cadmium zinc telluride and its use as a nuclear radiation detector material[J]. Materials Science and Engineering: R: Reports, 2001, 32(4/5): 103-189. |
3 | WU R, KANG Y, WEI D K, et al. Energy spectrum correction and carrier mobility calculation of CdZnTe pixel detector based on the depth of interaction[J]. IEEE Transactions on Nuclear Science, 2022, 69(7): 1773-1779. |
4 | AWADALLA S A, HUNT A W, LYNN K G, et al. Isoelectronic oxygen-related defect in CdTe crystals investigated using thermoelectric effect spectroscopy[J]. Physical Review B, 2004, 69(7): 075210. |
5 | GUL R, BOLOTNIKOV A, KIM H K, et al. Point defects in CdZnTe crystals grown by different techniques[J]. Journal of Electronic Materials, 2011, 40(3): 274-279. |
6 | KRASIKOV D, KNIZHNIK A, POTAPKIN B, et al. Why shallow defect levels alone do not cause high resistivity in CdTe[J]. Semiconductor Science Technology, 2013, 28(12): 125019. |
7 | CHERN S S, VYDYANATH H R, KROGER F A. The defect structure of CdTe: hall data[J]. Journal of Solid State Chemistry, 1975, 14(1): 33-43. |
8 | KIM K, HWANG S, YU H, et al. Two-step annealing to remove Te secondary-phase defects in CdZnTe while preserving the high electrical resistivity[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2333-2337. |
9 | YANG G, BOLOTNIKOV A E, FOCHUK P M, et al. Thermo-migration of Te inclusions in CdZnTe during post-growth annealing in a temperature-gradient field[J]. Physica Status Solidi (c), 2014, 11(7/8): 1328-1332. |
10 | EGARIEVWE S U, YANG G, EGARIEVWE A A, et al. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 51-55. |
11 | SUH J, HWANG S, YU H, et al. High-temperature annealing of CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2017, 64(12): 2966-2969. |
12 | FIEDERLE M, BABENTSOV V, FRANC J, et al. Growth of high resistivity CdTe and (Cd, Zn)Te crystals[J]. Crystal Research and Technology, 2003, 38(7/8): 588-597. |
13 | LI W W, CAO Z C, ZHANG B, et al. Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe[J]. Journal of Crystal Growth, 2006, 292(1): 53-61. |
14 | LI G Q, ZHANG X L, JIE W Q, et al. Thermal treatment of detector-grade CdZnTe[J]. Journal of Crystal Growth, 2006, 295(1): 31-35. |
15 | 何亦辉, 介万奇, 周 岩, 等. 退火处理对CdZnTe晶体光电性能的影响[J]. 人工晶体学报, 2014, 43(2): 269-274. |
HE Y H, JIE W Q, ZHOU Y, et al. Effects of annealing on the optical and electrical properties of CdZnTe crystals[J]. Journal of Synthetic Crystals, 2014, 43(2): 269-274 (in Chinese). | |
16 | WARDAK A, KOCHANOWSKA D M, KOCHAŃSKI M, et al. Effect of doping and annealing on resistivity, mobility-lifetime product, and detector response of (Cd, Mn)Te[J]. Journal of Alloys and Compounds, 2023, 936: 168280. |
17 | FIEDERLE M, EICHE C, SALK M, et al. Modified compensation model of CdTe[J]. Journal of Applied Physics, 1998, 84(12): 6689-6692. |
18 | VYDYANATH H R, ELLSWORTH J, KENNEDY J J, et al. Recipe to minimize Te precipitation in CdTe and (Cd, Zn)Te crystals[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1992, 10(4): 1476-1484. |
19 | WEI S-H, ZHANG S B. Chemical trends of defect formation and doping limit in Ⅱ-Ⅵ semiconductors:the case of CdTe[J]. Physical Review B, 2002, 66(15): 155211. |
20 | GREENBERG J H. P-T-X phase equilibrium and vapor pressure scanning of non-stoichiometry in the Cd-Zn-Te system[J]. Progress in Crystal Growth and Characterization of Materials, 2003, 47(2/3): 196-238. |
21 | GREENBERG J H, GUSKOV V N, ALIKHANYAN A S. Solid-vapor equilibrium in quasi-binary CdTe∶ZnTe[J]. Crystal Research and Technology, 2003, 38(7/8): 598-603. |
22 | MENG Y P, LIANG X Y, XIE C, et al. Effect of CZT powder burying CZT crystal on annealing in Cd atmosphere[J]. Crystal Research and Technology, 2023, 58(9): 2300054. |
23 | ZHANG J X, LIANG X Y, MIN J H, et al. Effect of point defects trapping characteristics on mobility-lifetime (μτ) product in CdZnTe crystals[J]. Journal of Crystal Growth, 2019, 519: 41-45. |
24 | EICHE C, MAIER D, SINERIUS D, et al. Investigation of compensation defects in CdTe∶Cl samples grown by different techniques[J]. Journal of Applied Physics, 1993, 74(11): 6667-6670. |
25 | RAKHSHANI A E, MAKDISI Y. Detailed study of bandgap energy levels in CdTe films electrodeposited from chlorine-containing solutions[J]. Physica Status Solidi (a), 2000, 179(1): 159-170. |
26 | RAKHSHANI A E. CdTe films electrodeposited from chlorine-containing solutions[J]. Journal of Physics Condensed Matter, 1999, 11(46): 9115-9126. |
27 | 袁绶章, 赵 文, 孔金丞, 等. Cd饱和气氛退火对碲锌镉晶体导电类型转变界面的影响[J]. 红外技术, 2021, 43(6): 517-522. |
YUAN S Z, ZHAO W, KONG J C, et al. Influence of Cd-rich annealing on position-dependent conductivity transition in Cd1- x Zn x Te crystal[J]. Infrared Technology, 2021, 43(6): 517-522 (in Chinese). | |
28 | BABENTSOV V, BOIKO V, SCHEPELSKII G A, et al. Photoluminescence and electric spectroscopy of dislocation-induced electronic levels in semi-insulated CdTe and CdZnTe[J]. Journal of Luminescence, 2010, 130(8): 1425-1430. |
29 | NASIEKA I, KOVALENKO N, KUTNIY V, et al. Photoluminescence-based material quality diagnostics in the manufacturing of CdZnTe ionizing radiation sensors[J]. Sensors and Actuators A: Physical, 2013, 203: 176-180. |
30 | QIU P H, MIN J H, LIANG X Y, et al. Effect of deep level defects on CdZnTe detector internal electric field and device performance[J]. Journal of Applied Physics, 2021, 130(20): 205702. |
31 | MORTON E J, CROCKETT G M, SELLIN P J, et al. The charged particle response of CdZnTe radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 422(1/2/3): 169-172. |
32 | LI L X, HUANG G W, XI S X, et al. γ-ray energy spectrum response tailing in CdZnTe detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1037: 166922. |
33 | BOLOTNIKOV A E, CAMARDA G S, CUI Y, et al. Internal electric-field-lines distribution in CdZnTe detectors measured using X-Ray mapping[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 791-794. |
34 | YANG G, BOLOTNIKOV A E, CAMARDA G S, et al. Internal electric field investigations of a cadmium zinc telluride detector using synchrotron X-ray mapping and pockels effect measurements[J]. Journal of Electronic Materials, 2009, 38: 1563-1567. |
35 | AWADALLA S A, MACKENZIE J, CHEN H, et al. Characterization of detector-grade CdZnTe crystals grown by traveling heater method (THM)[J]. Journal of Crystal Growth, 2010, 312(4): 507-513. |
36 | PEKÁREK J, DĚDIČ V, FRANC J, et al. Infrared LED enhanced spectroscopic CdZnTe detector working under high fluxes of X-rays[J]. Sensors, 2016, 16(10): 1591. |
37 | SHCHERBAK L, FEICHOUK P, FOCHOUK P, et al. Self-compensation studies in Cd-saturated in-doped CdTe[J]. Journal of Crystal Growth, 1996, 161(1/2/3/4): 219-222. |
[1] | HUO Xiaoqing, ZHANG Shengnan, ZHOU Jinjie, WANG Yingmin, CHENG Hongjuan, SUN Qisheng. Preparation and Properties of 3~4 Inch Fe Doped β-Ga2O3 Single Crystal with High Resistance [J]. Journal of Synthetic Crystals, 2025, 54(3): 407-413. |
[2] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
[3] | WANG Kunyuan, LIANG Xiaoyan, MIN Jiahua, ZHANG Jijun. Effect of In-Situ Heating Treatment on the Quality and Properties of CdZnTe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(12): 2079-2084. |
[4] | LI Yang, CAO Kun, JIE Wanqi. Effect of Thermal Treated GaSb Substrate for Epitaxial Growth of CdZnTe Film by Close-Spaced Sublimation Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1705-1711. |
[5] | CHU Fan, ZHAO Chunfeng. Design of Two-Dimensional Layered Phononic Crystal Structures Based on LightGBM and Genetic Algorithm [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1720-1728. |
[6] | MENG Jiayuan, LI Yi, ZHAO Yuchun, WU Haorong, WANG Xuesong, LUO Wanjun, YU Lan. Enhancing the Electrical Conductivity and Anisotropy of CuCrO2 Ceramics by Mg2+ Doping [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 163-169. |
[7] | XU Zheren, ZHANG Jijun, CAO Xiangzhi, LU Wei, LIU Hao, QI Yongwu. Study on Thermal Field of Growth System of CdZnTe Crystal Growth by Traveling Heater Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1589-1598. |
[8] | NIE Fan, HAN Shuo, ZENG Dongmei. Effect of Biaxial Strain on Electronic and Optical Properties of Single-Layer CdZnTe [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1394-1399. |
[9] | XU Zunhao, LI Jin, HE Xian, AN Baijun, ZHOU Chunling. Effect of High Pulling Rate on the Distribution of Point Defects and Energy Consumption in ø 300 mm Monocrystalline Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(4): 562-570. |
[10] | LI Zhenxing, BAI Wei, WANG Yanzhang, LIU Jianggao, ZHANG Yingxia, SHE Weilin. Study on Double Sided Polishing Technology of Large Size Irregular CdZnTe Wafer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 244-251. |
[11] | WEI Yiheng, FAN Jieping, QIU Kepeng. Optimal Band-Gap Design of Two-Dimensional Chiral Phononic Crystals Based on ISIGHT [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(1): 56-64. |
[12] | YANG Xianglong, CHEN Xiufang, XIE Xuejian, PENG Yan, YU Guojian, HU Xiaobo, WANG Yaohao, XU Xiangang. Growth of 8 Inch Conductivity Type 4H-SiC Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1745-1748. |
[13] | HAO Peiyao, ZHENG Lili, ZHANG Hui, LIAO Jilong. Hot Zone Design of Large Size Ingot Crystalline Silicon Using Transfer Learning [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1323-1336. |
[14] | LI Yi, WU Haorong, HU Yiding, MENG Jiayuan, SONG Hongyuan, TANG Yanyan, LI Zhenhua, CHEN Liangwei, LIU Bin, YU Lan. Modulation of Mg Doping on Microstructure and Electro-Thermal Conduction of CuAlO2 Polycrystals with Delafossite Structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1422-1430. |
[15] | ZHANG Jiahong, ZHANG Jijun, WANG Linjun, XU Zheren, CAO Xiangzhi, LU Wei. Study on Component Transport and Interface Morphology of CdZnTe Crystals Grown by Traveling Heater Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 973-985. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||