1 |
MILLAN J, GODIGNON P, PERPINA X, et al. A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163.
|
2 |
ZHANG J Y, WILLIS J, YANG Z N, et al. Deep UV transparent conductive oxide thin films realized through degenerately doped wide-bandgap gallium oxide[J]. Cell Reports Physical Science, 2022, 3(3): 100801.
|
3 |
HOSAKA S, NISHINAKA H, OGAWA T. High conductivity of n-type β-Ga2O3 (010) thin films achieved through Si doping by mist chemical vapor deposition[J]. AIP Advances, 2024, 14: 015040.
|
4 |
VARLEY J B, JANOTTI A, FRANCHINI C, et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides[J]. Physical Review B, 2012, 85(8): 081109.
|
5 |
GAKE T, KUMAGAI Y, OBA F. First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs[J]. Physical Review Materials, 2019, 3(4): 044603.
|
6 |
GREEN A J, CHABAK K D, BALDINI M, et al. β-Ga2O3 MOSFETs for radio frequency operation[J]. IEEE Electron Device Letters, 2017, 38(6): 790-793.
|
7 |
LI W S, SARASWAT D, LONG Y, et al. Near-ideal reverse leakage current and practical maximum electric field in β-Ga2O3 Schottky barrier diodes[J]. Applied Physics Letters, 2020, 116: 192101.
|
8 |
GEIS M W, WADE T C, WUORIO C H, et al. Progress toward diamond power field-effect transistors[J]. Physica Status Solidi (a), 2018, 215(22): 1870050.
|
9 |
JIANG Z X, WU Z Y, MA C C, et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product[J]. Materials Today Physics, 2020, 14: 100226.
|
10 |
WU Z Y, JIANG Z X, MA C C, et al. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films[J]. Materials Today Physics, 2021, 17: 100356.
|
11 |
CHIKOIDZE E, TCHELIDZE T, SARTEL C, et al. Ultra-high critical electric field of 13.2 MV/cm for Zn-doped p-type β-Ga2O3 [J]. Materials Today Physics, 202, 15: 100263.
|
12 |
ZHOU X, LI M, ZHANG J Z, et al. High quality P-type Mg-doped β-Ga2O3-δ films for solar-blind photodetectors[J]. IEEE Electron Device Letters, 2022, 43(4): 580-583.
|
13 |
RADHA S K, RATNAPARKHE A, LAMBRECHT W R L. Quasiparticle self-consistent GW band structures and high-pressure phase transitions of LiGaO2 and NaGaO2 [J]. Physical Review B, 2021, 103: 045201.
|
14 |
AAHMAN J, SVENSSON G, ALBERTSSON J. Structure of LiGa5O8 [J]. Physical Inorganic Chemistry, 1996, 27(39):39003.
|
15 |
LIU F, YAN W Z, CHUANG Y J, et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8 [J]. Scientific Reports, 2013, 3: 1554.
|
16 |
WANG Y, JIANG J L, SONG Z C, et al. Structural characterization &, optical and electrical properties of LiGaO2 & LiGa5O8 micro-nanoparticles-based photodetectors[J]. Journal of Alloys and Compounds, 2021, 887: 161438.
|
17 |
ZHANG K T, VANGIPURAM V G T, HUANG H L, et al. Discovery of a robust p-type ultrawide bandgap oxide semiconductor: LiGa5O8 [J]. Advanced Electronic Materials, 2023: 2300550.
|
18 |
LAMBRECHT W R L. Spinel LiGa5O8 prospects as ultra-wideband-gap semiconductor: band structure, optical properties, and doping[J]. Journal of Vacuum Science & Technology A, 2024, 42(2): 022705.
|
19 |
DABSAMUT K, TAKAHASHI K, LAMBRECHT W R L. Native defects and their complexes in spinel LiGa5O8 [J]. Journal of Applied Physics, 2024, 135(23): 235707.
|
20 |
LYONS J L. Deep polaronic acceptors in LiGa5O8 [J]. Journal of Applied Physics, 2024, 135(16): 165705.
|
21 |
CHEN H M, SUN X L, WANG G D, et al. LiGa5O8: Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors[J]. Materials Horizons, 2017, 4(6): 1092-1101.
|
22 |
HUANG W C, GONG X Y, CUI R R, et al. Enhanced persistent luminescence of LiGa5O8∶Cr3+ near-infrared phosphors by codoping Sn4+ [J]. Journal of Materials Science: Materials in Electronics, 2018, 29(12): 10535-10541.
|
23 |
LU X N, WANG Y F, YANG J, et al. LiGa5O8∶Fe3+: a novel and super long near-infrared persistent material[J]. Ceramics International, 2024, 50(19): 35359-35367.
|
24 |
KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
|
25 |
HEDIN L, LUNDQVIST S. Effects of electron-electron and electron-phonon interactions on the one-electron states of solids[J]. Solid State Physics, 1970, 23: 1-181.
|
26 |
HEDIN L. New method for calculating the one-particle Green’s function with application to the electron-gas problem[J]. Physical Review, 1965, 139(3A): A796-A823.
|
27 |
FREYSOLDT C, GRABOWSKI B, HICKEL T, et al. First-principles calculations for point defects in solids[J]. Reviews of Modern Physics, 2014, 86(1): 253-305.
|