Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (6): 986-996.DOI: 10.16553/j.cnki.issn1000-985x.2025.0019
• Research Articles • Previous Articles Next Articles
LI Xiang1(
), CHEN Gen2, SHEN Jie2, ZHU Minghui3
Received:2025-01-23
Online:2025-06-20
Published:2025-06-23
CLC Number:
LI Xiang, CHEN Gen, SHEN Jie, ZHU Minghui. Effect of Substrate Type on Stress and Crystallinity of Growing Polycrystalline Diamond Film[J]. Journal of Synthetic Crystals, 2025, 54(6): 986-996.
| Parameter | Power/W | Pressure/kPa | Gas flow: H2/CH4 | Time/h | Substrate temperature/℃ |
|---|---|---|---|---|---|
| Nucleation | 4 100 | 20.5 | 400 sccm/15 sccm | 1 | 910±20 |
| Growth | 4 100 | 21 | 400 sccm/12 sccm | 50 | 910±20 |
Table 1 Nucleation and growth parameters of deposited diamond films
| Parameter | Power/W | Pressure/kPa | Gas flow: H2/CH4 | Time/h | Substrate temperature/℃ |
|---|---|---|---|---|---|
| Nucleation | 4 100 | 20.5 | 400 sccm/15 sccm | 1 | 910±20 |
| Growth | 4 100 | 21 | 400 sccm/12 sccm | 50 | 910±20 |
Fig.3 Electron density distribution at a height of 16 mm (a) and simulation results showing the variation in electron density from the center to the edge of the substrate surface (b) are presented
Fig.5 For the diamond film deposited on a ϕ50.8 mm W substrate, Raman spectra were acquired at six points spaced 5 mm apart along a radial line from center to edge (a), and SEM images were captured at selected locations (b)~(g)
Fig.6 For the diamond film deposited on a ϕ50.8 mm Si substrate, Raman spectra were acquired at six points spaced 5 mm apart along a radial line from center to edge (a), and SEM images were captured at selected locations (b)~(g)
Fig.7 For the diamond film deposited on a ϕ50.8 mm Mo substrate, Raman spectra were acquired at six points spaced 5 mm apart along a radial line from center to edge (a), and SEM images were captured at selected locations (b)~(g)
| Material | Lattice constant/Å | Elasticity modulus/GPa | Thermal expansion coefficient/(10-6 K-1) | Melting temperature/K |
|---|---|---|---|---|
| Si[ | 5.431 | 130 | 2.5 | 1 683 |
| W | 3.165 | 411 | 4.5 | 3 600 |
| Mo | 3.147 | 327 | 5.8 | 2 888 |
| Diamond | 3.567 | 1 050 | 1.2 | 3 773 |
| MoC | 4.14 | 392 | 4.9 | 2 965 |
| WC | 2.81 | 710 | 3.8 | 3 143 |
| SiC | 3.1 | 450 | 4.4 | 3 027 |
Table 2 Physical properties of substrates, carbides and diamonds
| Material | Lattice constant/Å | Elasticity modulus/GPa | Thermal expansion coefficient/(10-6 K-1) | Melting temperature/K |
|---|---|---|---|---|
| Si[ | 5.431 | 130 | 2.5 | 1 683 |
| W | 3.165 | 411 | 4.5 | 3 600 |
| Mo | 3.147 | 327 | 5.8 | 2 888 |
| Diamond | 3.567 | 1 050 | 1.2 | 3 773 |
| MoC | 4.14 | 392 | 4.9 | 2 965 |
| WC | 2.81 | 710 | 3.8 | 3 143 |
| SiC | 3.1 | 450 | 4.4 | 3 027 |
Fig.14 TEM cross-sectional image (a), Fourier transform (FFT) diffraction pattern (b), and inverse FFT image (c) obtained from a selected region of the diamond film deposited on a W substrate
| 1 | 罗晓航, 许光宇, 李利军, 等. 自支撑金刚石厚膜三方向三点弯曲断裂韧性对比研究[J]. 人工晶体学报, 2024, 53(12): 2085-2093. |
| LUO X H, XU G Y, LI L J, et al. Comparison on three-point-bending fracture toughness of free-standing diamond thick films from three directions[J]. Journal of Synthetic Crystals, 2024, 53(12): 2085-2093 (in Chinese). | |
| 2 | 彭 博, 李 奇, 张舒淼, 等. 金刚石肖特基二极管的研究进展[J]. 人工晶体学报, 2023, 52(5): 732-745. |
| PENG B, LI Q, ZHANG S M, et al. Research progress of diamond Schottky barrier diodes[J]. Journal of Synthetic Crystals, 2023, 52(5): 732-745 (in Chinese). | |
| 3 | 杨俊茹, 岳艳萍, 吕 浩, 等. 沉积温度对不同Co含量WC-Co/SiC/Diamond界面结合性能的影响[J]. 人工晶体学报, 2023, 52(11): 1997-2006. |
| YANG J R, YUE Y P, LYU H, et al. Influence of deposition temperature on interface bonding properties of WC-Co/SiC/diamond with different Co content[J]. Journal of Synthetic Crystals, 2023, 52(11): 1997-2006 (in Chinese). | |
| 4 | SHIKATA S. Single crystal diamond wafers for high power electronics[J]. Diamond and Related Materials, 2016, 65: 168-175. |
| 5 | CUENCA J A, MANDAL S, THOMAS E L H, et al. Microwave plasma modelling in clamshell chemical vapour deposition diamond reactors[J]. Diamond and Related Materials, 2022, 124: 108917. |
| 6 | LI Y F, AN X M, LIU X C, et al. A 915 MHz/75 kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna developed for growing large area diamond films[J]. Diamond and Related Materials, 2017, 78: 67-72. |
| 7 | CHENG H Y, YANG C Y, YANG L C, et al. Effective thermal and mechanical properties of polycrystalline diamond films[J]. Journal of Applied Physics, 2018, 123(16): 165105. |
| 8 | MAHROKH M, YU H Y, GUO Y J. Thermal modeling of GaN HEMT devices with diamond heat-spreader[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 986-991. |
| 9 | AMANO H, BAINES Y, BEAM E, et al. The 2018 GaN power electronics roadmap[J]. Journal of Physics D∶Applied Physics, 2018, 51(16): 163001. |
| 10 | GOYAL V, SUMANT A V, TEWELDEBRHAN D, et al. Direct low-temperature integration of nanocrystalline diamond with GaN substrates for improved thermal management of high-power electronics[J]. Advanced Functional Materials, 2012, 22(7): 1525-1530. |
| 11 | OHKI T, YAMADA A, MINOURA Y, et al. An over 20-W/mm S-band InAlGaN/GaN HEMT with SiC/diamond-bonded heat spreader[J]. IEEE Electron Device Letters, 2019, 40(2): 287-290. |
| 12 | ALTUKHOV A A, AFANAS’EV M S, KVASKOV V B, et al. Application of diamond in high technology[J]. Inorganic Materials, 2004, 40(1): S50-S70. |
| 13 | ZHANG Y, FENG S, WANG T A. Preparating quantum entanglement between microtoroidal-resonator-mediated nitrogen-vacancy centers in diamond[J]. International Journal of Theoretical Physics, 2019, 58(9): 3073-3080. |
| 14 | ZHANG X F, MATSUMOTO T, SAKURAI U, et al. Energy distribution of Al2O3/diamond interface states characterized by high temperature capacitance-voltage method[J]. Carbon, 2020, 168: 659-664. |
| 15 | AIELLO G, SCHRECK S, AVRAMIDIS K A, et al. Towards large area CVD diamond disks for Brewster-angle windows[J]. Fusion Engineering and Design, 2020, 157: 111818. |
| 16 | WANG B, WENG J, WANG Z T, et al. Investigation on the influence of the gas flow mode around substrate on the deposition of diamond films in an overmoded MPCVD reactor chamber[J]. Vacuum, 2020, 182: 109659. |
| 17 | AN K, LIU X P, LI X J, et al. Numerical simulation and experimental study of a novel high-power microwave plasma CVD reactor for diamond films deposition[J]. Journal of Synthetic Crystals, 2015, 44(6): 1544-50. |
| 18 | LI Y F, SU J J, LIU Y Q, et al. A circumferential antenna ellipsoidal cavity type MPCVD reactor developed for diamond film deposition[J]. Diamond and Related Materials, 2015, 51: 24-29. |
| 19 | YAMADA H, CHAYAHARA A, MOKUNO Y. Effect of Ar addition on uniformity of diamond growth by using microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2018, 87: 143-148. |
| 20 | 张 帅, 安 康, 杨志亮, 等. 新型MPCVD沉积模式制备高均匀性的D100 mm金刚石薄膜[J]. 真空与低温, 2022, 28(5): 549-555. |
| ZHANG S, AN K, YANG Z L, et al. 100 mm in diameter diamond films with high uniformity prepared by novel deposition mode in MPCVD system[J]. Vacuum and Cryogenics, 2022, 28(5): 549-555 (in Chinese). | |
| 21 | VADIM S, ARTEM M, ALEXANDR A, et al. Effect of substrate holder design on stress and uniformity of large-area polycrystalline diamond films grown by microwave plasma-assisted CVD[J]. Coatings, 2020, 10(10): 939. |
| 22 | WENG J, LIU F, XIONG L W, et al. Deposition of large area uniform diamond films by microwave plasma CVD[J]. Vacuum, 2018, 147: 134-142. |
| 23 | NAD S, GU Y J, ASMUSSEN J. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions[J]. The Review of Scientific Instruments, 2015, 86(7): 074701. |
| 24 | LU J, GU Y, GROTJOHN T A, et al. Experimentally defining the safe and efficient, high pressure microwave plasma assisted CVD operating regime for single crystal diamond synthesis[J]. Diamond and Related Materials, 2013, 37: 17-28. |
| 25 | WENG J, LIU F, WANG Z T, et al. Investigation on the preparation of large area diamond films with 150-200 mm in diameter using 915 MHz MPCVD system[J]. Vacuum, 2023, 217: 112543. |
| 26 | HASSOUNI K, SILVA F, GICQUEL A. TOPICAL REVIEW: modelling of diamond deposition microwave cavity generated plasmas[J]. Journal of Physics D Applied Physics, 2010, 43(15): 153001. |
| 27 | SU J, LI Y, LIU Y, et al. Revisiting the gas flow rate effect on diamond films deposition with a new dome-shaped cavity type microwave plasma CVD reactor[J]. Diamond and Related Materials, 2017, 73: 99-104. |
| 28 | KULISCH W, PETKOV C, PETKOV E, et al. Low temperature growth of nanocrystalline and ultrananocrystalline diamond films: a comparison[J]. Physica Status Solidi (a), 2012, 209(9): 1664-1674. |
| 29 | BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation[J]. Diamond and Related Materials, 2016, 62: 49-57. |
| 30 | SHAO S W, LIU P, YE S, et al. Structural evolution and self-destructive behavior of Mo/Ti transition layers during free-standing diamond-film preparation[J]. Ceramics International, 2024, 50(13): 23677-23684. |
| 31 | GAO Q J, LIN Z D. Physical mechanism of synthesized diamond films on the substrate of a strong carbide forming element[J]. Acta Physica Sinica, 1992, 41(5): 798. |
| 32 | LIU Z, LI C M, CHEN L X, et al. Deposition of crackless freestanding diamond films on Mo substrates with Zr interlayer[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(2): 246-250. |
| 33 | JEONG J H, LEE S Y, LEE W S, et al. Mechanical analysis for crack-free release of chemical-vapor-deposited diamond wafers[J]. Diamond and Related Materials, 2002, 11(8): 1597-1605. |
| 34 | FILLOT F, SABBIONE C. Nanoscale mechanics of thermally crystallized GST thin film by in situ X-ray diffraction[J]. Journal of Applied Physics, 2020, 128(23): 235107. |
| 35 | GUO J C, LI C M, LIU J L, et al. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet[J]. Applied Surface Science, 2016, 370: 237-242. |
| 36 | KOBAYASHI K, KARASAWA S, WATANABE T, et al. Growth of diamond thin films on silicon and TEM observation of the interface[J]. Journal of Crystal Growth, 1990, 99(1/2/3/4): 1211-1214. |
| [1] | LI Yazhou, MA Zhanhong, YAO Weizhen, YANG Shaoyan, LIU Xianglin, LI Chengming, WANG Zhanguo. Effect of MOCVD Carrier Gas Flow Rate on GaN Epitaxial Growth [J]. Journal of Synthetic Crystals, 2025, 54(6): 979-985. |
| [2] | ZHU Litao, LIU Lei, YUAN Shuai, ZHOU Shenglang, ZHANG Huali, WANG Chen, GAO Yu, CAO Jianwei, YU Xuegong, YANG Deren. Effect of Cable Diameter on Growth Stability of Large-Size Czochralski Silicon Crystals [J]. Journal of Synthetic Crystals, 2025, 54(6): 942-948. |
| [3] | CHEN Danying, YAN Long, LUO Jiahao, ZHENG Zhenyu, JIANG Yong, ZHANG Kai, ZHOU Ning, LIAO Chenzi, GUO Shiping. Effect of C/Si Ratio on SiC Fast Homoepitaxial Growth in Vertical Hot-Wall CVD Reactor [J]. Journal of Synthetic Crystals, 2025, 54(4): 569-580. |
| [4] | SHAO Meifang, FENG Jinyang, HOU Tianjiang, MA Xiao. Properties of Gadolinium Gallium Garnet Substituded with Different Stoichiometric Ratios of Ca2+/Mg2+/Zr4+ [J]. Journal of Synthetic Crystals, 2025, 54(4): 543-552. |
| [5] | ZHU Xingjie, ZHANG Ping, ZUO Dunwen. Effect of Residual Stress and Electric Field on Indentation Hardness of 4H-SiC Surface [J]. Journal of Synthetic Crystals, 2025, 54(4): 560-568. |
| [6] | HAN Yu, JIAO Teng, YU Han, SAI Qinglin, CHEN Duanyang, LI Zhen, LI Yihan, ZHANG Zhao, DONG Xin. Effect of Substrate Crystal Planes on the Properties of Homoepitaxial n-Ga2O3 Thin Films Grown by MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 438-444. |
| [7] | YIN Changshuai, MENG Biao, LIANG Kang, CUI Hanwen, LIU Sheng, ZHANG Zhaofu. Comparative Study on Thermal Field of Ga2O3 Single Crystal Growth Simulated by Different Thermal Radiation Models [J]. Journal of Synthetic Crystals, 2025, 54(3): 386-395. |
| [8] | QU Zhenyu, XU Wenhui, JIANG Haodong, LIANG Hengshuo, ZHAO Tiancheng, XIE Yinfei, SUN Huarui, ZOU Xinbo, YOU Tiangui, QI Hongji, HAN Genquan, OU Xin. Research Progress on Heterogeneous Substrate Integration Technology for Gallium Oxide [J]. Journal of Synthetic Crystals, 2025, 54(3): 470-490. |
| [9] | HU Jichao, ZHAO Qiyang, YANG Zhihao, YANG Ying, PENG Bo, DING Xiongjie, LIU Wei, ZHANG Hong. Simulation Study on the Effect of Gallium Source Temperature on the Temperature Field in LPCVD Gallium Oxide Epitaxy [J]. Journal of Synthetic Crystals, 2025, 54(3): 452-461. |
| [10] | SUN Rujun, ZHANG Jinghui, LI Yifan, HAO Yue, ZHANG Jincheng. Review on Mg Doping of Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(3): 361-370. |
| [11] | WANG Ziming, ZHANG Yachao, FENG Qian, LIU Shiteng, LIU Yuhong, WANG Yao, WANG Long, ZHANG Jincheng, HAO Yue. ε-Ga2O3 Growth on c-Plane Sapphire Substrate with Metal-Organic Chemical Vapor Deposition [J]. Journal of Synthetic Crystals, 2025, 54(3): 420-425. |
| [12] | YAN Yuchao, WANG Cheng, LU Changcheng, LIU Yingying, XIA Ning, JIN Zhu, ZHANG Hui, YANG Deren. Growth of 2-Inch Fe-Doped β-Ga2O3 Single Crystal with High Resistance and Properties of (010) Substrates [J]. Journal of Synthetic Crystals, 2025, 54(2): 197-201. |
| [13] | XIE Yinfei, HE Yang, LIU Weiye, XU Wenhui, YOU Tiangui, OU Xin, GUO Huaixin, SUN Huarui. Recent Progress on Thermal Management of Ultrawide Bandgap Gallium Oxide Power Devices [J]. Journal of Synthetic Crystals, 2025, 54(2): 290-311. |
| [14] | YAO Suhao, ZHANG Maolin, JI Xueqiang, YANG Lili, LI Shan, GUO Yufeng, TANG Weihua. Mist CVD Grown High-Phase-Purity α-Ga2O3 and Its Photoresponse Performance [J]. Journal of Synthetic Crystals, 2025, 54(2): 233-243. |
| [15] | LI Xiongjie, NING Pingfan, CHEN Shiao, QIAO Sibo, CHENG Hongjuan, WANG Yingmin, NIU Pingjuan. Growth of α-Ga2O3 on Different Plane of Sapphire Substrate by Mist-CVD Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 255-262. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS