[1] SASAKI K. Prospects for β-Ga2O3: now and into the future[J]. Applied Physics Express, 2024, 17(9): 090101. [2] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [3] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501. [4] STEPANOV S I, NIKOLAEV V I, BOUGROV V E, et al. Gallium oxide: properties and applications-a review[J]. Reviews on Advanced Materials Science, 2016, 44(1): 63-86. [5] GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191. [6] 陈绍华, 穆文祥, 张 晋, 等. Ni掺杂β-Ga2O3单晶的光、电特性研究[J]. 人工晶体学报, 2023, 52(8): 1373-1377. CHEN S H, MU W X, ZHANG J, et al. Optical and electrical properties of Ni-doped β-Ga2O3 single crystal[J]. Journal of Synthetic Crystals, 2023, 52(8): 1373-1377 (in Chinese). [7] 唐慧丽, 何诺天, 罗 平, 等. 超宽禁带半导体β-Ga2O3单晶生长突破2英寸[J]. 人工晶体学报, 2017, 46(12): 2533-2534. TANG H L, HE N T, LUO P, et al. Ultra-wide bandgap semiconductor β-Ga2O3 single crystal growth breaks through 2 inches[J]. Journal of Synthetic Crystals, 2017, 46(12): 2533-2534 (in Chinese). [8] KURAMATA A, KOSHI K, WATANABE S, et al. Bulk crystal growth of Ga2O3[C]//Oxide-based Materials and Devices IX. January 27-February 1, 2018. San Francisco, USA. SPIE, 2018: 13. [9] MU W X, JIA Z T, YIN Y R, et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 2017, 714: 453-458. [10] BU Y Z, SAI Q L, QI H J. Stability of interfacial thermal balance in thick β-Ga2O3 crystal growth by EFG[J]. Journal of Crystal Growth, 2023, 612: 127194. [11] STELIAN C, BARTHALAY N, DUFFAR T. Numerical investigation of factors affecting the shape of the crystal-melt interface in edge-defined film-fed growth of sapphire crystals[J]. Journal of Crystal Growth, 2017, 470: 159-167. [12] LE C C, LI Z Y, MU W X, et al. 3D numerical design of the thermal field before seeding in an edge-defined film-fed growth system for β-Ga2O3 ribbon crystals[J]. Journal of Crystal Growth, 2019, 506: 83-90. [13] WANG J L, LI Z Y, QI C, et al. 3D numerical modeling and simulation of β-Ga2O3 crystal growth by edge-defined film-fed growth method[J]. Journal of Vacuum Science & Technology A, 2025, 43(1): 013202. [14] GUO Z, VERMA A, WU X F, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide[J]. Applied Physics Letters, 2015, 106(11): 111909. [15] KLIMM D, AMGALAN B, GANSCHOW S, et al. The thermal conductivity tensor of β-Ga2O3 from 300 to 1275 K[J]. Crystal Research and Technology, 2023, 58(2): 2200204. [16] ONSAGER L. Reciprocal relations in irreversible processes. I[J]. Physical Review, 1931, 37(4): 405-426. [17] ONSAGER L. Reciprocal relations in irreversible processes. II[J]. Physical Review, 1931, 38(12): 2265-2279. [18] CHENG L, WU Y L, ZHONG W B, et al. Photophysics of β-Ga2O3: phonon polaritons, exciton polaritons, free-carrier absorption, and band-edge absorption[J]. Journal of Applied Physics, 2022, 132(18): 185704. [19] GALAZKA Z. Growth of bulk β-Ga2O3 single crystals by the Czochralski method[J]. Journal of Applied Physics, 2022, 131(3): 031103. [20] 于 行, 赵 琪, 齐小方, 等. 热交换法掺钛蓝宝石晶体生长过程中内辐射传热对晶体热应力的影响[J]. 人工晶体学报, 2024, 53(7): 1212-1221. YU H, ZHAO Q, QI X F, et al. Effect of internal radiation heat transfer on the thermal stress in growing Ti:sapphire crystal by heat exchanger method[J]. Journal of Synthetic Crystals, 2024, 53(7): 1212-1221 (in Chinese). [21] BRAESCU L, EPURE S, DUFFAR T. Mathematical and numerical analysis of capillarity problems and processes[M]. //Crystal Growth Processes Based on Capillarity. John Wiley & Sons, Ltd, 2010: 465-524. [22] 闵乃本. 晶体生长的物理基础[M]. 南京: 南京大学出版社, 2019. MIN N B. Physical basis of crystal growth[M]. Nanjing: Nanjing University Press, 2019 (in Chinese). |