Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (11): 1974-1982.DOI: 10.16553/j.cnki.issn1000-985x.2025.0071
• Research Articles • Previous Articles Next Articles
SUN Wentao(
), XU Yan(
), FENG Lushun, MENG Wenqing, ZHENG Weijian, LI Xinxing, LI Suzhi(
)
Received:2025-04-08
Online:2025-11-20
Published:2025-12-11
CLC Number:
SUN Wentao, XU Yan, FENG Lushun, MENG Wenqing, ZHENG Weijian, LI Xinxing, LI Suzhi. Synthesis, Crystal Structure and Magnetic Properties of Metal Organic Cobalt Phosphonates Complexes Based on Chiral/Racemic Ligands[J]. Journal of Synthetic Crystals, 2025, 54(11): 1974-1982.
| Complex | S-1 | rac-2 |
|---|---|---|
| Empirical formula | C88H134Co6N12O33P4 | C44H66Co3N6O16P2 |
| Formula weight | 2 365.52 | 1 173.75 |
| Crystal system | Monoclinic | Monoclinic |
| Space-group | P21 | P21/c |
| a/nm | 1.092 790(10) | 1.025 83(4) |
| b/nm | 2.737 45(2) | 2.751 00(7) |
| c/nm | 1.766 610(2) | 1.071 20(4) |
| α/(°) | 90 | 90 |
| β/(°) | 90.622 0(10) | 117.899(5) |
| γ/(°) | 90 | 90 |
| V/nm3 | 5.284 43(9) | 2.676 3(19) |
| Z | 2 | 2 |
| Dc /(g·cm-3) | 1.487 | 1.459 |
| F (000) | 2 464.0 | 1 222.0 |
| θ range/(°) | 5.002 ≤2θ≤151.97 | 4.49≤2θ≤60.816 |
| Range of h, k, l | ± 13, ±34, -20, +22 | -14, 11, -37, 28, ±13 |
| Collected reflections | 61 684 | 22 146 |
| Unique reflections | 20 623 | 5 989 |
| Data/restraints/parameters | 20 623/280/1 353 | 5 989/545/444 |
| Absorption correction /mm-1 | 8.479 | 1.051 |
| Rint | 0.048 8 | 0.026 0 |
| R[I>2σ(I)] | R1=0.045 4, wR2=0.114 5 | R1=0.059 7, wR2=0.126 5 |
| R[all data] | R1=0.051 6, wR2=0.117 0 | R1=0.067 3, wR2=0.129 2 |
| Goodness of fit | 0.997 | 1.199 |
| Largest diff. peak and hole/(e·nm-3) | 960 and -700 | 690 and -620 |
| Flack parameter | -0.000 23(18) | 1 |
| CCDC | 2350648 | 2350649 |
Table 1 Data of crystal structure S-1 and rac-2
| Complex | S-1 | rac-2 |
|---|---|---|
| Empirical formula | C88H134Co6N12O33P4 | C44H66Co3N6O16P2 |
| Formula weight | 2 365.52 | 1 173.75 |
| Crystal system | Monoclinic | Monoclinic |
| Space-group | P21 | P21/c |
| a/nm | 1.092 790(10) | 1.025 83(4) |
| b/nm | 2.737 45(2) | 2.751 00(7) |
| c/nm | 1.766 610(2) | 1.071 20(4) |
| α/(°) | 90 | 90 |
| β/(°) | 90.622 0(10) | 117.899(5) |
| γ/(°) | 90 | 90 |
| V/nm3 | 5.284 43(9) | 2.676 3(19) |
| Z | 2 | 2 |
| Dc /(g·cm-3) | 1.487 | 1.459 |
| F (000) | 2 464.0 | 1 222.0 |
| θ range/(°) | 5.002 ≤2θ≤151.97 | 4.49≤2θ≤60.816 |
| Range of h, k, l | ± 13, ±34, -20, +22 | -14, 11, -37, 28, ±13 |
| Collected reflections | 61 684 | 22 146 |
| Unique reflections | 20 623 | 5 989 |
| Data/restraints/parameters | 20 623/280/1 353 | 5 989/545/444 |
| Absorption correction /mm-1 | 8.479 | 1.051 |
| Rint | 0.048 8 | 0.026 0 |
| R[I>2σ(I)] | R1=0.045 4, wR2=0.114 5 | R1=0.059 7, wR2=0.126 5 |
| R[all data] | R1=0.051 6, wR2=0.117 0 | R1=0.067 3, wR2=0.129 2 |
| Goodness of fit | 0.997 | 1.199 |
| Largest diff. peak and hole/(e·nm-3) | 960 and -700 | 690 and -620 |
| Flack parameter | -0.000 23(18) | 1 |
| CCDC | 2350648 | 2350649 |
| Bond | Length/nm | Bond | Length/nm | Bond | Length/nm |
|---|---|---|---|---|---|
| Co1—O1 | 0.200 5(4) | Co3—O10A | 0.206 8(3) | Co5—O16 | 0.208 7(4) |
| Co1—O3 | 0.200 6(4) | Co3—O21 | 0.214 5(3) | Co5—O19 | 0.206 3(4) |
| Co1—O8 | 0.200 7(3) | Co3—O22 | 0.211 6(3) | Co5—O23 | 0.227 8(4) |
| Co1—N1 | 0.217 8(4) | Co3—N8B | 0.216 9(4) | Co5—N4 | 0.214 4(4) |
| Co1—N5 | 0.211 7(4) | Co3—N9 | 0.217 2(4) | Co5—N10 | 0.211 8(4) |
| Co2—O4 | 0.196 0(3) | Co4—O11 | 0.200 6(3) | Co6—O15 | 0.204 7(4) |
| Co2—O6 | 0.198 3(4) | Co4—O13 | 0.198 3(4) | Co6—O20A | 0.206 6(4) |
| Co2—O9 | 0.197 8(4) | Co4—O18 | 0.199 2(3) | Co6—O24 | 0.212 0(3) |
| Co2—N2 | 0.217 3(4) | Co4—N3 | 0.215 4(4) | Co6—O25 | 0.212 9(3) |
| Co2—N7 | 0.208 7(4) | Co4—N11 | 0.207 6(4) | Co6—N6C | 0.217 6(4) |
| Co3—O5 | 0.204 9(4) | Co5—O14 | 0.209 1(3) | Co6—N12D | 0.217 8(4) |
| Bond | Angle/(°) | Bond | Angle/(°) | Bond | Angle/(°) |
| O1—Co1—O3 | 119.43(16) | O5—Co3—O10A | 174.08(14) | O19—Co5—O14 | 99.97(14) |
| O1—Co1—O8 | 123.98(16) | O5—Co3—O21 | 93.22(14) | O19—Co5—O16 | 154.58(16) |
| O1—Co1—N1 | 78.58(15) | O5—Co3—O22 | 85.96(14) | O19—Co5—O23 | 83.12(14) |
| O1—Co1—N5 | 96.01(16) | O5—Co3—N8B | 88.43(16) | O19—Co5—N4 | 84.02(15) |
| O3—Co1—O8 | 114.83(15) | O5—Co3—N9 | 89.81(16) | O19—Co5—N10 | 93.90(17) |
| O3—Co1—N1 | 85.86(15) | O10A—Co3—O21 | 92.37(14) | N4—Co5—O23 | 100.15(15) |
| O3—Co1—N5 | 95.11(16) | O10A—Co3—O22 | 88.42(14) | N10—Co5—O23 | 82.10(16) |
| O8—Co1—N1 | 92.74(14) | O10A—Co3—N8B | 90.20(15) | N10—Co5—N4 | 176.71(17) |
| O8—Co1—N5 | 92.04(16) | O22—Co3—N9 | 90.25(16) | O16—Co5—N4 | 79.81(17) |
| N5—Co1—N1 | 174.20(16) | N8B—Co3—N9 | 174.27(16) | O16—Co5—N10 | 102.99(18) |
| O4—Co2—O6 | 113.06(16) | O11—Co4—N3 | 79.21(16) | O15—Co6—O20A | 171.39(15) |
| O4—Co2—O9 | 118.29(15) | O11—Co4—N11 | 95.92(16) | O15—Co6—O24 | 90.46(14) |
| O4—Co2—N2 | 89.07(15) | O13—Co4—O11 | 118.86(15) | O15—Co6—O25 | 87.50(14) |
| O4—Co2—N7 | 97.45(16) | O13—Co4—O18 | 115.51(14) | O15—Co6—O6C | 93.67(18) |
| O6—Co2—N2 | 79.06(16) | O13—Co4—N3 | 87.09(16) | O15—Co6—N12D | 88.58(17) |
| O6—Co2—N7 | 95.47(16) | O13—Co4—N11 | 92.54(17) | O20A—Co6—O24 | 95.41(14) |
| O9—Co2—O6 | 126.04(15) | O18—Co4—O11 | 123.92(16) | O20A—Co6—O25 | 86.91(13) |
| O9—Co2—N2 | 86.14(15) | O18—Co4—N3 | 90.97(15) | O20A—Co6—N6C | 93.01(17) |
| O9—Co2—N7 | 93.43(17) | O18—Co4—N11 | 94.44(16) | O20A—Co6—N12D | 85.06(16) |
| N7—Co2—N2 | 172.78(16) | N11—Co4—N3 | 174.17(17) | O24—Co6—O25 | 176.66(15) |
| O10A—Co3—N9 | 92.09(15) | O14—Co5—O23 | 170.77(14) | O24—Co6—N6C | 86.12(15) |
| O21—Co3—N8B | 83.94(15) | O14—Co5—N4 | 88.86(14) | O24—Co6—N12D | 90.75(15) |
| O21—Co3—N9 | 90.72(16) | O14—Co5—N10 | 89.00(15) | O25—Co6—N6C | 91.36(15) |
| O22—Co3—O21 | 178.73(15) | O16—Co5—O14 | 99.19(15) | O25—Co6—N12D | 91.84(15) |
| O22—Co3—N8B | 95.06(15) | O16—Co5—O23 | 80.59(15) | N6C—Co6—N12D | 176.16(18) |
Table 2 Data of main bond lengths and bond angles of S-1
| Bond | Length/nm | Bond | Length/nm | Bond | Length/nm |
|---|---|---|---|---|---|
| Co1—O1 | 0.200 5(4) | Co3—O10A | 0.206 8(3) | Co5—O16 | 0.208 7(4) |
| Co1—O3 | 0.200 6(4) | Co3—O21 | 0.214 5(3) | Co5—O19 | 0.206 3(4) |
| Co1—O8 | 0.200 7(3) | Co3—O22 | 0.211 6(3) | Co5—O23 | 0.227 8(4) |
| Co1—N1 | 0.217 8(4) | Co3—N8B | 0.216 9(4) | Co5—N4 | 0.214 4(4) |
| Co1—N5 | 0.211 7(4) | Co3—N9 | 0.217 2(4) | Co5—N10 | 0.211 8(4) |
| Co2—O4 | 0.196 0(3) | Co4—O11 | 0.200 6(3) | Co6—O15 | 0.204 7(4) |
| Co2—O6 | 0.198 3(4) | Co4—O13 | 0.198 3(4) | Co6—O20A | 0.206 6(4) |
| Co2—O9 | 0.197 8(4) | Co4—O18 | 0.199 2(3) | Co6—O24 | 0.212 0(3) |
| Co2—N2 | 0.217 3(4) | Co4—N3 | 0.215 4(4) | Co6—O25 | 0.212 9(3) |
| Co2—N7 | 0.208 7(4) | Co4—N11 | 0.207 6(4) | Co6—N6C | 0.217 6(4) |
| Co3—O5 | 0.204 9(4) | Co5—O14 | 0.209 1(3) | Co6—N12D | 0.217 8(4) |
| Bond | Angle/(°) | Bond | Angle/(°) | Bond | Angle/(°) |
| O1—Co1—O3 | 119.43(16) | O5—Co3—O10A | 174.08(14) | O19—Co5—O14 | 99.97(14) |
| O1—Co1—O8 | 123.98(16) | O5—Co3—O21 | 93.22(14) | O19—Co5—O16 | 154.58(16) |
| O1—Co1—N1 | 78.58(15) | O5—Co3—O22 | 85.96(14) | O19—Co5—O23 | 83.12(14) |
| O1—Co1—N5 | 96.01(16) | O5—Co3—N8B | 88.43(16) | O19—Co5—N4 | 84.02(15) |
| O3—Co1—O8 | 114.83(15) | O5—Co3—N9 | 89.81(16) | O19—Co5—N10 | 93.90(17) |
| O3—Co1—N1 | 85.86(15) | O10A—Co3—O21 | 92.37(14) | N4—Co5—O23 | 100.15(15) |
| O3—Co1—N5 | 95.11(16) | O10A—Co3—O22 | 88.42(14) | N10—Co5—O23 | 82.10(16) |
| O8—Co1—N1 | 92.74(14) | O10A—Co3—N8B | 90.20(15) | N10—Co5—N4 | 176.71(17) |
| O8—Co1—N5 | 92.04(16) | O22—Co3—N9 | 90.25(16) | O16—Co5—N4 | 79.81(17) |
| N5—Co1—N1 | 174.20(16) | N8B—Co3—N9 | 174.27(16) | O16—Co5—N10 | 102.99(18) |
| O4—Co2—O6 | 113.06(16) | O11—Co4—N3 | 79.21(16) | O15—Co6—O20A | 171.39(15) |
| O4—Co2—O9 | 118.29(15) | O11—Co4—N11 | 95.92(16) | O15—Co6—O24 | 90.46(14) |
| O4—Co2—N2 | 89.07(15) | O13—Co4—O11 | 118.86(15) | O15—Co6—O25 | 87.50(14) |
| O4—Co2—N7 | 97.45(16) | O13—Co4—O18 | 115.51(14) | O15—Co6—O6C | 93.67(18) |
| O6—Co2—N2 | 79.06(16) | O13—Co4—N3 | 87.09(16) | O15—Co6—N12D | 88.58(17) |
| O6—Co2—N7 | 95.47(16) | O13—Co4—N11 | 92.54(17) | O20A—Co6—O24 | 95.41(14) |
| O9—Co2—O6 | 126.04(15) | O18—Co4—O11 | 123.92(16) | O20A—Co6—O25 | 86.91(13) |
| O9—Co2—N2 | 86.14(15) | O18—Co4—N3 | 90.97(15) | O20A—Co6—N6C | 93.01(17) |
| O9—Co2—N7 | 93.43(17) | O18—Co4—N11 | 94.44(16) | O20A—Co6—N12D | 85.06(16) |
| N7—Co2—N2 | 172.78(16) | N11—Co4—N3 | 174.17(17) | O24—Co6—O25 | 176.66(15) |
| O10A—Co3—N9 | 92.09(15) | O14—Co5—O23 | 170.77(14) | O24—Co6—N6C | 86.12(15) |
| O21—Co3—N8B | 83.94(15) | O14—Co5—N4 | 88.86(14) | O24—Co6—N12D | 90.75(15) |
| O21—Co3—N9 | 90.72(16) | O14—Co5—N10 | 89.00(15) | O25—Co6—N6C | 91.36(15) |
| O22—Co3—O21 | 178.73(15) | O16—Co5—O14 | 99.19(15) | O25—Co6—N12D | 91.84(15) |
| O22—Co3—N8B | 95.06(15) | O16—Co5—O23 | 80.59(15) | N6C—Co6—N12D | 176.16(18) |
| Bond | Length/nm | Bond | Length/nm | Bond | Length/nm |
|---|---|---|---|---|---|
| Co1—O2 | 0.197 9(5) | Co1—N2 | 0.207 4(4) | Co2—O6 | 0.219 0(3) |
| Co1—O3 | 0.192 1(3) | Co2—O4 | 0.199 4(2) | Co2—N3 | 0.216 9(3) |
| Co1—O5 | 0.203 8(4) | Co2—O4 | 0.199 4(2) | Co2—N3 | 0.216 9(3) |
| Co1—N1 | 0.214 8(9) | Co2—O6 | 0.219 0(3) | ||
| Bond | Angle/(°) | Bond | Angle/(°) | Bond | Angle/(°) |
| O2—Co1—O5A | 110.75(19) | O5A—Co1—N2 | 85.97(10) | O4—Co2—N3D | 89.33(11) |
| O2—Co1—N1 | 78.1(9) | N2—Co1—N1 | 94.03(10) | O6—Co2—O62 | 180.0 |
| O2—Co1—N2 | 96.8(2) | O4—Co2—O4B | 180.0 | N3D—Co2—O6 | 92.36(12) |
| O3—Co1—O2 | 136.83(19) | O4B—Co2—O6 | 85.97(10) | N3C—Co2—O6 | 87.64(12) |
| O3—Co1—O5A | 109.81(16) | O4B—Co2—O6B | 94.03(10) | N3C—Co2—O6B | 92.36(12) |
| O3—Co1—N1 | 86.1(6) | O4—Co2—O6 | 85.97(10) | N3D—Co2—O6B | 87.64(12) |
| O3—Co1—N2 | 93.53(16) | O4—Co2—N3C | 89.32(10) | N3D—Co2—N3C | 180.0 |
| O5A—Co1—N1 | 92.3(7) | O4B—Co2—N3C | 90.68(11) |
Table 3 Data of main bond lengths and bond angles of rac-2
| Bond | Length/nm | Bond | Length/nm | Bond | Length/nm |
|---|---|---|---|---|---|
| Co1—O2 | 0.197 9(5) | Co1—N2 | 0.207 4(4) | Co2—O6 | 0.219 0(3) |
| Co1—O3 | 0.192 1(3) | Co2—O4 | 0.199 4(2) | Co2—N3 | 0.216 9(3) |
| Co1—O5 | 0.203 8(4) | Co2—O4 | 0.199 4(2) | Co2—N3 | 0.216 9(3) |
| Co1—N1 | 0.214 8(9) | Co2—O6 | 0.219 0(3) | ||
| Bond | Angle/(°) | Bond | Angle/(°) | Bond | Angle/(°) |
| O2—Co1—O5A | 110.75(19) | O5A—Co1—N2 | 85.97(10) | O4—Co2—N3D | 89.33(11) |
| O2—Co1—N1 | 78.1(9) | N2—Co1—N1 | 94.03(10) | O6—Co2—O62 | 180.0 |
| O2—Co1—N2 | 96.8(2) | O4—Co2—O4B | 180.0 | N3D—Co2—O6 | 92.36(12) |
| O3—Co1—O2 | 136.83(19) | O4B—Co2—O6 | 85.97(10) | N3C—Co2—O6 | 87.64(12) |
| O3—Co1—O5A | 109.81(16) | O4B—Co2—O6B | 94.03(10) | N3C—Co2—O6B | 92.36(12) |
| O3—Co1—N1 | 86.1(6) | O4—Co2—O6 | 85.97(10) | N3D—Co2—O6B | 87.64(12) |
| O3—Co1—N2 | 93.53(16) | O4—Co2—N3C | 89.32(10) | N3D—Co2—N3C | 180.0 |
| O5A—Co1—N1 | 92.3(7) | O4B—Co2—N3C | 90.68(11) |
Fig.3 Single crystal structure of complex S-1. (a) Building unit of S-1, hydrogen atoms have been partially omitted for clarity; (b) layers made up of hydrogen-bonded inorganic chains in the ac plane; (c) packing diagrams for S-1. Symmetry codes: A: -1+x, +y, +z; B: 1-x, 1/2+y, -z; C: -1+x, -1+y, +z; D: 1-x, 1/2+y, 1-z
Fig.4 Single crystal structure of complex rac-2. (a) Building unit of rac-2, hydrogen atoms have been partially omitted for clarity; (b) layers made up of hydrogen-bonded inorganic chains in the ac plane; (c) packing diagrams for rac-2. Symmetry codes:A:1-x, 1-y, 1-z; B: -x, 1-y, -z; C:-1+x, 3/2-y, -1/2+z; D: 1-x, -1/2+y, 1/2-z; E: 1+x, y, 1+z; F: x, 3/2-y, -1/2+z; G: 2-x, -1/2+y, 3/2-z
| [1] | CLEARFIELD A, DEMADIS K. Metal phosphonate chemistry: from synthesis to applications[M]. Royal Society of Chemistry, 2012. |
| [2] | BAO S S, SHIMIZU G K H, ZHENG L M. Proton conductive metal phosphonate frameworks[J]. Coordination Chemistry Reviews, 2019, 378: 577-594. |
| [3] | JIA J G, ZHENG L M. Metal-organic nanotubes: designs, structures and functions[J]. Coordination Chemistry Reviews, 2020, 403: 213083. |
| [4] | LV X W, WENG C C, ZHU Y P, et al. Nanoporous metal phosphonate hybrid materials as a novel platform for emerging applications: a critical review[J]. Small, 2021, 17(22): 2005304. |
| [5] | SALCEDO-ABRAIRA P, VILELA S M F, BABARYK A A, et al. Nickel phosphonate MOF as efficient water splitting photocatalyst[J]. Nano Research, 2021, 14(2): 450-457. |
| [6] | BAO S S, ZHENG L M. Magnetic materials based on 3d metal phosphonates[J]. Coordination Chemistry Reviews, 2016, 319: 63-85. |
| [7] | SHEIKH J A, JENA H S, CLEARFIELD A, et al. Phosphonate based high nuclearity magnetic cages[J]. Accounts of Chemical Research, 2016, 49(6): 1093-1103. |
| [8] | WENG G G, XU K, HOU T, et al. Enhancing the circularly polarized luminescence of europium coordination polymers by doping a chromophore ligand into superhelices[J]. Inorganic Chemistry, 2023, 62(51): 21044-21052. |
| [9] | ROM T, PAUL A K. Role of aromatic vs. aliphatic amine for the variation of structural, electrical and catalytic behaviors in a series of silver phosphonate extended hybrid solids[J]. Dalton Transactions, 2020, 49(39): 13618-13634. |
| [10] | FENG J S, BAO S S, REN M, et al. Chirality- and pH-controlled supramolecular isomerism in cobalt phosphonates and its impact on the magnetic behavior[J]. Chemistry-A European Journal, 2015, 21(48): 17336-17343. |
| [11] | SALAAM J, TABTI L, BAHAMYIROU S, et al. Formation of mono- and polynuclear luminescent lanthanide complexes based on the coordination of preorganized phosphonated pyridines[J]. Inorganic Chemistry, 2018, 57(10): 6095-6106. |
| [12] | JIA J G, ZHAO C C, WEI Y F, et al. Macroscopic helical assembly of one-dimensional coordination polymers: helicity inversion triggered by solvent isomerism[J]. Journal of the American Chemical Society, 2023, 145(44): 23948-23962. |
| [13] | CAI Z S, BAO S S, REN M, et al. Homochiral cobalt phosphonates containing Δ-type chains with a tunable interlayer distance and a field-induced phase transition[J]. Chemistry-A European Journal, 2014, 20(51): 17137-17142. |
| [14] | HOU T, ZHAO C C, BAO S S, et al. Solvent modulation of the morphology of homochiral gadolinium coordination polymers and its impact on circularly polarized luminescence[J]. Dalton Transactions, 2024, 53(9): 4291-4298. |
| [15] | GARIBAY S J, STORK J R, WANG Z Q, et al. Enantiopure vs. racemic metalloligands: impact on metal-organic framework structure and synthesis[J]. Chemical Communications, 2007(46): 4881. |
| [16] | CHEN M, LI J, JIAO X C, et al. Enantiopure versus racemic naphthalene diimide-based n-type organic semiconductors: effect on charge transport[J]. Journal of Materials Chemistry C, 2019, 7(9): 2659-2665. |
| [17] | KATAEVA O, METLUSHKA K, IVSHIN K, et al. Supramolecular chirality in the crystals of mononuclear and polymeric cobalt(ii) complexes with enantiopure and racemic N-thiophosphorylated thioureas[J]. CrystEngComm, 2021, 23(10): 2081-2090. |
| [18] | WENG G G, ZHENG L M. Chiral metal phosphonates: assembly, structures and functions[J]. Science China Chemistry, 2020, 63(5): 619-636. |
| [19] | ZHU H, HUANG J, BAO S S, et al. Racemic metal phosphonates based on 1-phosphonomethyl-2-benzimidazol-piperidine[J]. CrystEngComm, 2013, 15(47): 10316-10322. |
| [20] | KAHN O. Molecular magnetism[M]. New York, Weinheim and Cambridge: VCH Publishers, Inc., 1993. |
| [21] | SAINT. Program for data extraction and reduction; siemens analytical X-ray instruments[OL]. Madison, WI, 1994-1996. |
| [22] | SHELXTL (version 5.0). Reference manual; siemens industrial automation[OL]. Analytical Instruments: Madison, WI, 1995. |
| [23] | ZOU Q, BAO S S, HUANG X D, et al. Cobalt(II)-dianthracene frameworks: assembly, exfoliation and properties[J]. Chemistry-An Asian Journal, 2021, 16(11): 1456-1465. |
| [24] | 蔡中胜, 鲍松松, 郑丽敏. 层状钴有机膦酸化合物的合成以及变磁行为[J]. 化学学报, 2013, 71(4): 555-559. |
| CAI Z S, BAO S S, ZHENG, L M. Layered cobalt phosphonate with metamagnetism[J]. Acta Chimica Sinica, 2013, 71(4): 555-559 (in Chinese). |
| [1] | CHEN Wentao, ZHUANG Xingyi, AN Hangyi, LAI Zhongjie, WANG Airong, LUO Yani, SHI Zhongfeng, LI Jiaming. Synthesis, Crystal Structure, and Fluorescence Sensing Property in Water by a Two-Dimensional Cobalt Metal-Organic Framework [J]. Journal of Synthetic Crystals, 2025, 54(9): 1642-1653. |
| [2] | JIN Yuxi, YU Haili, WANG Yuqing, XIE Longchen, TIAN Hongrui, CHEN Baokuan. Synthesis, Crystal Structure and Magnetic of Di-Nuclear VIV Complex [J]. Journal of Synthetic Crystals, 2025, 54(6): 1021-1026. |
| [3] | XU Tongtao, WAN Hongshan, YANG Tianxing, GAO Min, WANG Chong. Synthesis, Characterization and Properties of Two Coppper(Ⅱ) Complexes Derived from 4-Amino-2,6-Dimethoxypyrimidine [J]. Journal of Synthetic Crystals, 2025, 54(4): 684-692. |
| [4] | LI Jia, FENG Jing, MIAO Meng. Crystal Structure and Magnetism of Two Isomorphic Complexes Based on Mixed Ligands [J]. Journal of Synthetic Crystals, 2025, 54(4): 693-699. |
| [5] | ZHANG Shan, LIU Ling, FENG Jianxuan, CHEN Qiangqiang, WU Hongmei, GUO Yu. Synthesis, Structure, and Properties of [Cu2(HBTC)2(4, 4′-bpy)2·5H2O] Complex [J]. Journal of Synthetic Crystals, 2025, 54(11): 1961-1966. |
| [6] | WANG Rui, XIN Yanbo, YANG Guohui. Fe/Co Doping-Induced Metallic Transition and Enhanced Magnetic Anisotropy in Monolayer NiBr2 [J]. Journal of Synthetic Crystals, 2025, 54(11): 1954-1960. |
| [7] | ZHANG Shan, FENG Jianxuan, LIU Ling, GUO Yu. Green and Efficient Oxidation of Sulfides to Sulfoxides Catalyzed by Vanadium-Based Complex [J]. Journal of Synthetic Crystals, 2025, 54(11): 1983-1989. |
| [8] | LU Xinyi, WANG Ruixi, LI Mengyue, WU Liming, CHEN Ling. NaCeF(SO4)2: Synthesis Structure of New Cerium Fluoride Sulfate and Its Nonlinear Optical Property [J]. Journal of Synthetic Crystals, 2025, 54(10): 1772-1779. |
| [9] | LI Miao, ZHENG Yimeng, SUN Yiting, MAO Yuling, ZHU Baili, CUI Shuxin. Preparation and Properties of a Cadmium Coordination Compound with 4,5-Imidazoledicarboxylic Acid [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 121-125. |
| [10] | XU Yarong, ZHAO Jiuzhou, ZHAO Chengxiong, LIANG Yinong, SUN Zan. Synthesis, Structure and Hirshfeld Analysis of Zn Coordination Polymer Based on 1,3-Benzodioxole-5-Carboxylic Acid and 4,4′-Bipyridine [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 115-120. |
| [11] | WANG Xinying, QIAO Decong, PAN Huibin, GAO Xia, LU Jiufu. Cd(Ⅱ)-Based Fluorescent Sensing Organic Framework Constructed by Mixed Ligands and Its Performance [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 126-132. |
| [12] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
| [13] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
| [14] | CHU Dongdong, YANG Zhihua, PAN Shilie. Research Progress on Theoretical Design of Nonlinear Optical Materials via Data-Driven Approach [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1475-1493. |
| [15] | SHI Yiwei, YANG Ruijie, ZHANG Yingchun, WANG Xin, WANG Min, SONG Zhiguo. Synthesis, Characterization and Quantum Chemical Calculation of Cobalt Coordination Polymer with 4,4′-bipy Bridge [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1583-1590. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS