Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (11): 1983-1989.DOI: 10.16553/j.cnki.issn1000-985x.2025.0119
• Research Articles • Previous Articles Next Articles
ZHANG Shan(
), FENG Jianxuan, LIU Ling, GUO Yu(
)
Received:2025-05-30
Online:2025-11-20
Published:2025-12-11
CLC Number:
ZHANG Shan, FENG Jianxuan, LIU Ling, GUO Yu. Green and Efficient Oxidation of Sulfides to Sulfoxides Catalyzed by Vanadium-Based Complex[J]. Journal of Synthetic Crystals, 2025, 54(11): 1983-1989.
| Entry | Contents of catalyst/μmol | Contents of oxidant/mmol | Temperature/℃ | Conversion/% | Selectivity/% |
|---|---|---|---|---|---|
| 1 | 28 | H2O2 (0.42) | Room temperature | 40 | 92 |
| 2 | 28 | H2O2 (0.42) | 50 | 92 | 97 |
| 3 | 28 | H2O2 (0.42) | 60 | 99 | 97 |
| 4 | 28 | H2O2 (0.42) | 70 | 99 | 95 |
| 5 | 28 | H2O2 (0.40) | 60 | 80 | 97 |
| 6 | 28 | H2O2 (0.45) | 60 | 99 | 93 |
| 7 | 24 | H2O2 (0.42) | 60 | 88 | 95 |
| 8 | 32 | H2O2 (0.42) | 60 | 99 | 97 |
| 9 | 28 | TBHP (0.42) | 60 | 75 | 92 |
| 10 | 0 | H2O2 (0.42) | 60 | 25 | — |
| 11 | 28 | 0 | 60 | <1 | — |
| 12 | 0 | 0 | 60 | 0 | — |
| 13 Ethanol | 28 | H2O2 (0.42) | 60 | 89 | 97 |
| Reaction condition: MPS (0.4 mmol), solvent (5 mL), 30 min | |||||
Table 1 Complex 1 in catalyzing the conversion of MPS to MPSO under different conditions
| Entry | Contents of catalyst/μmol | Contents of oxidant/mmol | Temperature/℃ | Conversion/% | Selectivity/% |
|---|---|---|---|---|---|
| 1 | 28 | H2O2 (0.42) | Room temperature | 40 | 92 |
| 2 | 28 | H2O2 (0.42) | 50 | 92 | 97 |
| 3 | 28 | H2O2 (0.42) | 60 | 99 | 97 |
| 4 | 28 | H2O2 (0.42) | 70 | 99 | 95 |
| 5 | 28 | H2O2 (0.40) | 60 | 80 | 97 |
| 6 | 28 | H2O2 (0.45) | 60 | 99 | 93 |
| 7 | 24 | H2O2 (0.42) | 60 | 88 | 95 |
| 8 | 32 | H2O2 (0.42) | 60 | 99 | 97 |
| 9 | 28 | TBHP (0.42) | 60 | 75 | 92 |
| 10 | 0 | H2O2 (0.42) | 60 | 25 | — |
| 11 | 28 | 0 | 60 | <1 | — |
| 12 | 0 | 0 | 60 | 0 | — |
| 13 Ethanol | 28 | H2O2 (0.42) | 60 | 89 | 97 |
| Reaction condition: MPS (0.4 mmol), solvent (5 mL), 30 min | |||||
| Entry | Substrate | Product | Conversion/% | Selectivity/% |
|---|---|---|---|---|
| 1 | ![]() | ![]() | 99 | 97 |
| 2 | ![]() | ![]() | 92 | 98 |
| 3 | ![]() | ![]() | 93 | 98 |
| 4 | ![]() | ![]() | 94 | 94 |
| 5 | ![]() | ![]() | 98 | 86 |
| 6 | ![]() | ![]() | 95 | 96 |
| Reaction condition: catalyst (28 μmol), sulfides (0.4 mmol), methanol (5 mL), H2O2(0.42 mmol), 30 min, 60 ℃ | ||||
Table 2 Complex 1 catalyzes the conversion of various sulfides to sulfoxides
| Entry | Substrate | Product | Conversion/% | Selectivity/% |
|---|---|---|---|---|
| 1 | ![]() | ![]() | 99 | 97 |
| 2 | ![]() | ![]() | 92 | 98 |
| 3 | ![]() | ![]() | 93 | 98 |
| 4 | ![]() | ![]() | 94 | 94 |
| 5 | ![]() | ![]() | 98 | 86 |
| 6 | ![]() | ![]() | 95 | 96 |
| Reaction condition: catalyst (28 μmol), sulfides (0.4 mmol), methanol (5 mL), H2O2(0.42 mmol), 30 min, 60 ℃ | ||||
Fig.4 A possible mechanistic study of sulfide oxidation catalyzed by complex 1. (a) Conversion of MPS under different catalysts; (b) possible reaction mechanisms of sulfide catalytic oxidation; (c) UV-Vis spectra of complex 1 before and after the addition of H2O2
| [1] | LIU K, MENG J L, JIANG X F. Gram-scale synthesis of sulfoxides via oxygen enabled by Fe(NO3)3·9H2O[J]. Organic Process Research & Development, 2023, 27(7): 1198-1202. |
| [2] | WANG N Z, SAIDHAREDDY P, JIANG X F. Construction of sulfur-containing moieties in the total synthesis of natural products[J]. Natural Product Reports, 2020, 37(2): 246-275. |
| [3] | ZHAO W, YANG C X, HUANG J D, et al. Selective aerobic oxidation of sulfides to sulfoxides in water under blue light irradiation over Bi4O5Br2 [J]. Green Chemistry, 2020, 22(15): 4884-4889. |
| [4] | ZHANG T, HOU Y H, HOU B S, et al. High-nuclear polyoxovanadates assembled from pentagonal building blocks[J]. Chemical Communications, 2022, 58(79): 11111-11114. |
| [5] | SHI Z Y, ZHANG Q, YU X, et al. Isomeric organic ligands directing octamolybdates-linked copper(II) functionalized complexes as active catalysts in electrochemistry and desulfurization[J]. Journal of Molecular Structure, 2025, 1321: 139822. |
| [6] | YANG L, QIN M L, ZHANG G W, et al. Progress of sensitive materials in chemiresistive sensors for detecting chemical warfare agent simulants: a review[J]. Reviews in Analytical Chemistry, 2023, 42(1): 20220052. |
| [7] | WANG Y T, CHEN G H, WANG Q, et al. Ultra-fast degradation of mustard gas simulant by titanium dioxide-phosphomolybdic acid sub-1 nm nanobelts[J]. Small, 2025, 21(1): 2407980. |
| [8] | CHAKRAVARTHY R D, RAMKUMAR V, CHAND D K. A molybdenum based metallomicellar catalyst for controlled and selective sulfoxidation reactions in aqueous medium[J]. Green Chemistry, 2014, 16(4): 2190-2196. |
| [9] | HOQUE M A, JIANG T X, POOLE D L, et al. Manganese-mediated electrochemical oxidation of thioethers to sulfoxides using water as the source of oxygen atoms[J]. Journal of the American Chemical Society, 2024, 146(31): 21960-21967. |
| [10] | CHEN Y H, AN H Y, CHANG S Z, et al. Visible-light-responsive 2D photocatalysts assembled by Evans-showell-type POMs and metalloviologen frameworks for sulfide-sulfoxide transformation[J]. Inorganic Chemistry, 2023, 62(26): 10120-10130. |
| [11] | HOU Y J, AN H Y, ZHANG Y M, et al. Rapid destruction of two types of chemical warfare agent simulants by hybrid polyoxomolybdates modified by carboxylic acid ligands[J]. ACS Catalysis, 2018, 8(7): 6062-6069. |
| [12] | MENG L X, MA Y P, ZHANG X L, et al. Co0.50VOPO4·2H2O[J]. Acta Crystallographica Section C Crystal Structure Communications, 2009, 65(8): i45-i47. |
| [13] | SONG K, JIN X, LV X D, et al. Thermodynamic properties study of polyoxometalate Na7[H2PV14O42][J]. Journal of Chemical Physics, 2023, 158(12): 124201. |
| [14] | AKOUIBAA M, AMIN NEL, SOUSSI A, et al. Mg(H2O)4] [(VO)2(PO4)2]: crystal structure, DFT calculations, and catalytic activity[J]. Solid State Communications, 2024, 391: 115631. |
| [15] | LUO Z Y, LIU E H, HU T T, et al. Effect of synthetic methods on electrochemical performances of VOPO4·2H2O supercapacitor[J]. Ionics, 2015, 21(1): 289-294. |
| [16] | HAUSHALTER R C, SOGHOMONIAN V, CHEN Q, et al. Hydrothermal synthesis and crystal structure of [Ni(H2O)4] [VO(PO4)]2, a nickel(II) vanadyl(IV) phosphate[J]. Journal of Solid State Chemistry, 1993, 105(2): 512-519. |
| [17] | PAN Y Y, TIAN H R, ZHENG Z P. Modulating the catalytic properties of polyoxovanadates with transition-metal-complex units for selective oxidation of sulfides[J]. Inorganic Chemistry, 2024, 63(12): 5487-5496. |
| [18] | LI X Y, LI P H, LIU J H, et al. Copper(ii)-containing tungstotellurates(vi): syntheses, structures and their catalytic performances in selective oxidation of thioethers[J]. RSC Advances, 2020, 10(38): 22515-22521. |
| [19] | WANG X L, ZHANG J Y, CHANG Z H, et al. α-γ-type [Mo8O26]4--containing metal-organic complex possessing efficient catalytic activity toward the oxidation of thioether derivatives[J]. Inorganic Chemistry, 2021, 60(5): 3331-3337. |
| [20] | YU M Y, GUO T T, SHI X C, et al. Polyoxometalate-bridged Cu(I)- and Ag(I)-thiacalix [4] arene dimers for heterogeneous catalytic oxidative desulfurization and azide-alkyne “click” reaction[J]. Inorganic Chemistry, 2019, 58(16): 11010-11019. |
| [21] | LI J K, WEI C P, GUO D, et al. Inorganic-organic hybrid polyoxovanadates based on [V4O12]4- or [VO3]22- clusters: controllable synthesis, crystal structures and catalytic properties in selective oxidation of sulfides[J]. Dalton Transactions, 2020, 49(40): 14148-14157. |
| [22] | TIAN H R, ZHANG Z, DANG T Y, et al. Hollow lindqvist-like-shaped{V6}cluster-based metal-organic framework for the highly efficient detoxification of mustard gas simulant[J]. Inorganic Chemistry, 2021, 60(2): 840-845. |
| [23] | HU Y H, HUANG D P, YAN J, et al. Polyoxovanadate-based cyclomatrix polyphosphazene microspheres as efficient heterogeneous catalysts for the selective oxidation and desulfurization of sulfides[J]. Molecules, 2022, 27(23): 8560. |
| [1] | CHEN Wentao, ZHUANG Xingyi, AN Hangyi, LAI Zhongjie, WANG Airong, LUO Yani, SHI Zhongfeng, LI Jiaming. Synthesis, Crystal Structure, and Fluorescence Sensing Property in Water by a Two-Dimensional Cobalt Metal-Organic Framework [J]. Journal of Synthetic Crystals, 2025, 54(9): 1642-1653. |
| [2] | QIN Jilong, LI Xiangyuan, ZHANG Lulu, LIU Jianxin, LI Rui. First-Principles Study on Oxidation of Methane to Methanol Catalyzed by Non-Stoichiometric Tungsten Oxide (WO3-x) [J]. Journal of Synthetic Crystals, 2025, 54(8): 1441-1453. |
| [3] | JIN Yuxi, YU Haili, WANG Yuqing, XIE Longchen, TIAN Hongrui, CHEN Baokuan. Synthesis, Crystal Structure and Magnetic of Di-Nuclear VIV Complex [J]. Journal of Synthetic Crystals, 2025, 54(6): 1021-1026. |
| [4] | CAO Qi, CUI Luyao. Theoretical Study of Ni-MoTiNO for Electrochemical N2 Reduction Reaction [J]. Journal of Synthetic Crystals, 2025, 54(4): 708-716. |
| [5] | XU Tongtao, WAN Hongshan, YANG Tianxing, GAO Min, WANG Chong. Synthesis, Characterization and Properties of Two Coppper(Ⅱ) Complexes Derived from 4-Amino-2,6-Dimethoxypyrimidine [J]. Journal of Synthetic Crystals, 2025, 54(4): 684-692. |
| [6] | LI Jia, FENG Jing, MIAO Meng. Crystal Structure and Magnetism of Two Isomorphic Complexes Based on Mixed Ligands [J]. Journal of Synthetic Crystals, 2025, 54(4): 693-699. |
| [7] | ZHANG Shan, LIU Ling, FENG Jianxuan, CHEN Qiangqiang, WU Hongmei, GUO Yu. Synthesis, Structure, and Properties of [Cu2(HBTC)2(4, 4′-bpy)2·5H2O] Complex [J]. Journal of Synthetic Crystals, 2025, 54(11): 1961-1966. |
| [8] | SUN Wentao, XU Yan, FENG Lushun, MENG Wenqing, ZHENG Weijian, LI Xinxing, LI Suzhi. Synthesis, Crystal Structure and Magnetic Properties of Metal Organic Cobalt Phosphonates Complexes Based on Chiral/Racemic Ligands [J]. Journal of Synthetic Crystals, 2025, 54(11): 1974-1982. |
| [9] | LU Xinyi, WANG Ruixi, LI Mengyue, WU Liming, CHEN Ling. NaCeF(SO4)2: Synthesis Structure of New Cerium Fluoride Sulfate and Its Nonlinear Optical Property [J]. Journal of Synthetic Crystals, 2025, 54(10): 1772-1779. |
| [10] | LI Miao, ZHENG Yimeng, SUN Yiting, MAO Yuling, ZHU Baili, CUI Shuxin. Preparation and Properties of a Cadmium Coordination Compound with 4,5-Imidazoledicarboxylic Acid [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 121-125. |
| [11] | XU Yarong, ZHAO Jiuzhou, ZHAO Chengxiong, LIANG Yinong, SUN Zan. Synthesis, Structure and Hirshfeld Analysis of Zn Coordination Polymer Based on 1,3-Benzodioxole-5-Carboxylic Acid and 4,4′-Bipyridine [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 115-120. |
| [12] | WANG Xinying, QIAO Decong, PAN Huibin, GAO Xia, LU Jiufu. Cd(Ⅱ)-Based Fluorescent Sensing Organic Framework Constructed by Mixed Ligands and Its Performance [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 126-132. |
| [13] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
| [14] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
| [15] | WU Miao, SONG Juan, ZHOU Yunlong, REN Chuanqing. Synthesis, Crystal Structure and Fluorescence Properties of Zn(II) Complex Based on Pyrazine Carboxylic Acid Ligand [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1576-1582. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS