Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (12): 2190-2199.DOI: 10.16553/j.cnki.issn1000-985x.2025.0121
• Research Articles • Previous Articles Next Articles
Received:2025-06-05
Online:2025-12-20
Published:2026-01-04
CLC Number:
HUANG Cheng, QIAN Yannan. Multifunctional Additive of Sodium 4-Chlorobenzenesulfonate Enables Efficient Carbon-Based CsPbI2Br Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2025, 54(12): 2190-2199.
Fig.1 (a) XRD patterns of CsPbI2Br perovskite films without additive and with different additive concentrations, along with the magnified view of the (100) crystal plane; (b) FWHM of the (100) crystal plane and the intensity ratio of the (100) to (200) planes of CsPbI2Br perovskite; (c) theoretical models of the migration pathways of I- and Br- in the perovskite lattice with and without interstitial doping of Na+; (d) relative energy of system during the migration process of I- and Br-
Fig.2 Surface SEM images of CsPbI2Br perovskite films. (a) Without additive; (b) with 1 mg/mL additive; (c) with 2 mg/mL additive; (d) with 4 mg/mL additive
Fig.3 (a) Molecular structure and electrostatic potential map of 4Cl-BZS-; (b) adsorption configuration of 4Cl-BZS- on the (100) crystal plane of CsPbI2Br perovskite and the corresponding charge density difference; (c) configurations of halide vacancy defects and the structure after 4Cl-BZS- adsorption
| VI/eV | VBr/eV | |
|---|---|---|
| 吸附前 | -0.77 | -1.13 |
| —SO3-基团吸附后 | -0.43 | -0.25 |
| —Cl基团吸附后 | 0.39 | 0.14 |
Table 1 Formation energy of halide vacancies
| VI/eV | VBr/eV | |
|---|---|---|
| 吸附前 | -0.77 | -1.13 |
| —SO3-基团吸附后 | -0.43 | -0.25 |
| —Cl基团吸附后 | 0.39 | 0.14 |
Fig.6 UV-Vis absorption spectra (a), steady-state PL spectra (b), and time-resolved photoluminescence (TRPL) spectra (c) of CsPbI2Br perovskite films for the target and control groups
Fig.7 (a) J-V curves of solar cells based on CsPbI2Br perovskite films with different additive concentrations; (b) J-V curves of control and target devices under forward and reverse scanning
Fig.8 Mott-Schottky plots (a), Nyquist plots (b), steady-state current density and power conversion efficiency (c) of control and target CsPbI2Br perovskite solar cells; (d) evolution of PCE over time stored in an air glovebox at 25 ℃ and 10%~15% relative humidity
| [1] | LU M H, DING J K, MA Q X, et al. Dual-site passivation by heterocycle functionalized amidinium cations toward high-performance inverted perovskite solar cells and modules[J]. Energy & Environmental Science, 2025, 18(12): 5973-5984. |
| [2] | LIM E L, YANG J X, WEI Z H. Inorganic CsPbI2Br halide perovskites: from fundamentals to solar cell optimizations[J]. Energy & Environmental Science, 2023, 16(3): 862-888. |
| [3] | LIU B B, BI H, HE D M, et al. Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells[J]. ACS Energy Letters, 2021, 6(7): 2526-2538. |
| [4] | MIN J, CHOI Y, KIM D, et al. Beyond imperfections: exploring defects for breakthroughs in perovskite solar cell research[J]. Advanced Energy Materials, 2024, 14(6): 2302659. |
| [5] | XIA J X, SOHAIL M, NAZEERUDDIN M K. Efficient and stable perovskite solar cells by tailoring of interfaces[J]. Advanced Materials, 2023, 35(31): 2211324. |
| [6] | MOHD YUSOFF A R B, VASILOPOULOU M, GEORGIADOU D G, et al. Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells[J]. Energy & Environmental Science, 2021, 14(5): 2906-2953. |
| [7] | AN Y D, ZHANG N, ZENG Z X, et al. Optimizing crystallization in wide-bandgap mixed halide perovskites for high-efficiency solar cells[J]. Advanced Materials, 2024, 36(17): 2306568. |
| [8] | MA C Q, KANG M C, LEE S H, et al. Photovoltaically top-performing perovskite crystal facets[J]. Joule, 2022, 6(11): 2626-2643. |
| [9] | CAO J, TAO S X, BOBBERT P A, et al. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration[J]. Advanced Materials, 2018, 30(26): 1707350. |
| [10] | KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. |
| [11] | BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. |
| [12] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
| [13] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
| [14] | MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. |
| [15] | LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789. |
| [16] | NAM J K, JUNG M S, CHAI S U, et al. Unveiling the crystal formation of cesium lead mixed-halide perovskites for efficient and stable solar cells[J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 2936-2940. |
| [17] | ZHAO Y P, YAVUZ I, WANG M H, et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations[J]. Nature Materials, 2022, 21(12): 1396-1402. |
| [18] | GUAN H L, ZHOU S, FU S Q, et al. Regulating crystal orientation via ligand anchoring enables efficient wide-bandgap perovskite solar cells and tandems[J]. Advanced Materials, 2024, 36(1): 2307987. |
| [19] | SONG J, XIE H B, LIM E L, et al. Progress and perspective on inorganic CsPbI2Br perovskite solar cells[J]. Advanced Energy Materials, 2022, 12(40): 2201854. |
| [20] | DU X Y, ZHANG J, SU H, et al. Synergistic crystallization and passivation by a single molecular additive for high-performance perovskite solar cells[J]. Advanced Materials, 2022, 34(33): 2204098. |
| [21] | LIU L D, ZHENG C, XU Z, et al. Manipulating electron density distribution of nicotinamide derivatives toward defect passivation in perovskite solar cells[J]. Advanced Energy Materials, 2023, 13(30): 2300610. |
| [22] | YANG G Y, YIN Y F, DONG K W, et al. Realizing uniform defect passivation via self-polymerization of benzenesulfonate molecules in perovskite photovoltaics[J]. Advanced Materials, 2025, 37(29): 2503435. |
| [23] | XIA J X, ZHANG R L, LUO J S, et al. Dipole evoked hole-transporting material p-doping by utilizing organic salt for perovskite solar cells[J]. Nano Energy, 2021, 85: 106018. |
| [24] | CHEN H, LIU C, XU J, et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands[J]. Science, 2024, 384(6692): 189-193. |
| [25] | LI X C, GAO S, WU X, et al. Bifunctional ligand-induced preferred crystal orientation enables highly efficient perovskite solar cells[J]. Joule, 2024, 8(11): 3169-3185. |
| [26] | HU T X, WANG Y X, LIU K, et al. Understanding the decoupled effects of cations and anions doping for high-performance perovskite solar cells[J]. Nano-Micro Letters, 2025, 17(1): 145. |
| [27] | LIU N M, DUAN J L, LI H, et al. Columnar macrocyclic molecule tailored grain cage to stabilize inorganic perovskite solar cells with suppressed halide segregation[J]. Advanced Energy Materials, 2024, 14(48): 2402443. |
| [28] | SONG J W, SHIN Y S, KIM M, et al. Post-treated polycrystalline SnO2 in perovskite solar cells for high efficiency and quasi-steady-state-IV stability[J]. Advanced Energy Materials, 2024, 14(38): 2401753. |
| [29] | WANG P, WANG H, MAO Y C, et al. Organic ligands armored ZnO enhances efficiency and stability of CsPbI2Br perovskite solar cells[J]. Advanced Science, 2020, 7(21): 2000421. |
| [30] | WANG G Q, CHANG J R, BI J Y, et al. Ionic liquid surface treatment-induced crystal growth of CsPbIBr2 perovskite for high-performance solar cells[J]. Crystal Growth & Design, 2024, 24(2): 817-825. |
| [31] | ZHAO Y Y, GAO L, WANG Q R, et al. Reinforced SnO2 tensile-strength and “buffer-spring” interfaces for efficient inorganic perovskite solar cells[J]. Carbon Energy, 2024, 6(6): 468. |
| [1] | XIE Hang, JIN Zhiwen. Review on Impact of Film Preparation Method and Crystallization Behavior on the Imaging Performance of Halide Perovskite X-Ray Detectors [J]. Journal of Synthetic Crystals, 2025, 54(7): 1100-1120. |
| [2] | YU Mubing, GAO Gang, ZHAO Yongbiao, ZHU Jiaqi. Research on Crystallization Kinetics Regulation of Blue Quasi-2D Perovskites and Their Application in Electroluminescent Devices [J]. Journal of Synthetic Crystals, 2025, 54(7): 1132-1145. |
| [3] | XU Zhuangjie, BA Yanshuang, XI He, BAI Fuhui, CHEN Dazheng, ZHU Weidong, ZHANG Chunfu. Growth and X-Ray Detection Properties of High-Quality Perovskite Single Crystals [J]. Journal of Synthetic Crystals, 2025, 54(7): 1229-1237. |
| [4] | WANG Zhichao, YE Linfeng, RUAN Miao, YANG Chao, JIA Xuefeng, NI Yufeng, GUO Yonggang, GAO Peng. Amidine Small-Molecule Interfacial Modification Strategy in Perovskite Solar Cells [J]. Journal of Synthetic Crystals, 2025, 54(5): 873-881. |
| [5] | WANG Leilei, YIN Zhenhua, ZHANG Yunke, LIU Lei, CHEN Ming. First-Principles Study of Lead-Free Quaternary Thioiodides with Outstanding Optoelectronic Properties for Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 803-809. |
| [6] | HAO Jinglin, DENG Lifen, WANG Kaiyue, SONG Hui, JIANG Nan, KAZUHITO Nishimura. Synthesis of Doped Diamond by High-Pressure and High-Temperature: a Review [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 194-209. |
| [7] | LI Hong, LIAO Xin, HOU Jing, XU Zhong. Interface Defects of Perovskite Solar Cells and Their Suppression Methods [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 38-50. |
| [8] | ZHOU Chunqi, ZHANG Hui, LI Kaiyu. First-Principles Study on Photoelectric Properties of Janus Two-Dimensional Bilayer MoSSe/WSSe Heterostructures [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1668-1673. |
| [9] | HUANG Tian, MA Sai, LIU Xiaoyu, LI Ying, WU Hong, XU Yongbing, WEI Lujun, LI Feng, PU Yong. Two-Dimensional Kagome Magnetic Material Fe3As with Large Magnetic Anisotropy and High Curie Temperature [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1413-1421. |
| [10] | ZHANG Wanhe, HU Jianying, ZHOU Tao, LYU Yiting, WANG Keliang. First-Principles Study on Nb2N as Anode Material for Magnesium and Aluminum Ion Batteries [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1451-1457. |
| [11] | HOU Yinyin, MA Liangcai. First-Principles Study on Hydrogen Storage Performance of Li- and Ca-Decorated VO2 Monolayer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(11): 2014-2023. |
| [12] | LIU Han, GAO Lei, XUE Yufei, YE Yujiao, ZENG Chunhua. Research Progress of Two-Dimensional Group 11 Chalcogenides [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1493-1510. |
| [13] | REN Jintao, CHEN Qing, HUO Yu, WU Zhixin, YU Chunyan, ZHAI Guangmei. Effect of Acetylsalicylic Acid Passivator on the Performance of Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1042-1050. |
| [14] | JIAN Xiaogang, PENG Xinying, YANG Tian, HU Jibo, YIN Mingrui. Effect of Ti, V, Ni and Mo on Nucleation of CVD Diamond Coating [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(5): 933-940. |
| [15] | ZHAO Tingting. Theoretical Study on Electronic Properties and Interfacial Contact of Layered Graphene/WSSe Van der Waals Heterojunction [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(12): 2080-2089. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS