JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (10): 1813-1829.
• Reviews • Previous Articles Next Articles
WU Rui1, FAN Donghai1, KANG Yang1, WAN Xin1, GUO Chen1, WEI Dengke1, CHEN Donglei2, WANG Tao1,3, ZHA Gangqiang1,3
Received:
2021-08-13
Online:
2021-10-15
Published:
2021-11-24
CLC Number:
WU Rui, FAN Donghai, KANG Yang, WAN Xin, GUO Chen, WEI Dengke, CHEN Donglei, WANG Tao, ZHA Gangqiang. Research Progress on Semiconductor Materials and Devices for Radiation Detection[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1813-1829.
[1] SIMON R C, JAMES A S, MICHAEL E P. Physics in nuclear medicine: Chapter 6 interaction of radiation with matter[M]. 2th ed. Amsterdam: Saunders, 2012: 63-85. [2] JEN C K. On the induced current and energy balance in electronics[J]. Proceedings of the IRE, 1941, 29(6): 345-349. [3] CAVALLERI G, GATTI E, FABRI G, et al. Extension of Ramo’s theorem as applied to induced charge in semiconductor detectors[J]. Nuclear Instruments and Methods, 1971, 92(1): 137-140. [4] 汤 彬,葛良全,方 方,等.核辐射测量原理[M].第一版.哈尔滨:哈尔滨工程大学出版社,2011. TANG B, GE L Q, FANG F, et al. Principle of nuclear radiation measurement [M]. 1st ed. Harbin: Harbin Engineering University Press, 2011(in Chinese). [5] HALL R N, SOLTYS T J. High purity germanium for detector fabrication[J]. IEEE Transactions on Nuclear Science, 1971, 18(1): 160-165. [6] 岳 骞.高纯锗探测器在粒子物理与天体物理中的应用[J].中国科学:物理学 力学 天文学,2011,41(12):1434-1440. YUE Q. The application of high purity germanium detector in particle and astroparticle physics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2011, 41(12): 1434-1440(in Chinese). [7] ARMENGAUD E, AUGIER C, et al. Final results of the EDELWEISS-Ⅱ WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes[J]. Physics Letters B, 2011, 702(5): 329-335. [8] EBERTH J, SIMPSON J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors[J]. Progress in Particle and Nuclear Physics, 2008, 60(2): 283-337. [9] KEMMER J. Improvement of detector fabrication by the planar process[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1984, 226(1): 89-93. [10] KEMMER J, BURGER P, HENCK R, et al. Performance and applications of passivated ion-implanted silicon detectors[J]. IEEE Transactions on Nuclear Science, 1982, 29(1): 733-737. [11] LUKE P N, GOULDING F S, MADDEN N W, et al. Low capacitance large volume shaped-field germanium detector[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 926-930. [12] AKIMOV Y K. Silicon radiation detectors (Review)[J]. Instruments and Experimental Techniques, 2007, 50(1): 1-28. [13] PARKER S I, KENNEY C J, SEGAL J. 3D: A proposed new architecture for solid-state radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395(3): 328-343. [14] DAVIA C, HASI J, KENNEY C, et al. 3D silicon detectors: status and applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 549(1/2/3): 122-125. [15] LI Z. Novel silicon stripixel detector: concept, simulation, design, and fabrication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518(3): 738-753. [16] CHEN J W, DING H, LI Z, et al. 3D simulations of device performance for 3D-Trench electrode detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 796: 34-37. [17] KENNEY C J, PARKER S, WALCKIERS E. Results from 3-D silicon sensors with wall electrodes: near-cell-edge sensitivity measurements as a preview of active-edge sensors[J]. IEEE Transactions on Nuclear Science, 2001, 48(6): 2405-2410. [18] LIU X J, BORNEFALK H, CHEN H, et al. A silicon-strip detector for photon-counting spectral CT: energy resolution from 40 keV to 120 keV[J]. IEEE Transactions on Nuclear Science, 2014, 61(3): 1099-1105. [19] TINDALL C, HAU I D, LUKE P N. Evaluation of Si(Li) detectors for use in Compton telescopes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1/2): 130-135. [20] WILLIAMS T, MARTENS A, CASSOU K, et al. Novel applications and future perspectives of a fast diamond gamma ray detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 845: 199-202. [21] EBERHARDT J E, RYAN R D, TAVENDALE A J. High-resolution nuclear radiation detectors from epitaxial n-GaAs[J]. Applied Physics Letters, 1970, 17(10): 427-429. [22] KOBAYASHI T, KURU I, HOJO A, et al. Fe-doped high purity GaAs as a room temperature gamma-ray spectrometric detector[J]. IEEE Transactions on Nuclear Science, 1976, 23(1): 97-101. [23] BENZ K W, IRSIGLER R, LUDWIG J, et al. X-ray detectors based on semi-insulating GaAs substrate[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 322(3): 493-498. [24] BAVDAZ M, PEACOCK A, OWENS A. Future space applications of compound semiconductor X-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1/2): 123-131. [25] LIOLIOU G, BARNETT A M. Prototype GaAs X-ray detector and preamplifier electronics for a deep seabed mineral XRF spectrometer[J]. X-Ray Spectrometry, 2018, 47(3): 201-214. [26] AMENDOLIA S R, ANNOVAZZI A, BIGONGIARI A, et al. A prototype for a mammographic head and related developments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518(1/2): 382-385. [27] KANIA D R, LANE S, JONES B, et al. High speed detection of thermonuclear neutrons with solid state detectors[J]. IEEE Transactions on Nuclear Science, 1988, 35(1): 387-388. [28] MCGREGOR D S, HAMMIG M D, YANG Y H, et al. Design considerations for thin film coated semiconductor thermal neutron detectors—I: basics regarding alpha particle emitting neutron reactive films[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 500(1/2/3): 272-308. [29] BELL S L, SEN S. Crystal growth of Cd1-xZnxTe and its use as a superior substrate for LPE growth of Hg0.8Cd0.2Te[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1985, 3(1): 112-115. [30] DOTY F P. Properties of CdZnTe crystals grown by a high pressure Bridgman method[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1992, 10(4): 1418. [31] BARBER H B, BARRETT H H, DERENIAK E L, et al. A gamma-ray imager with multiplexer readout for use in ultra-high-resolution brain SPECT[J]. IEEE Transactions on Nuclear Science, 1993, 40(4): 1140-1144. [32] ROGULSKI M M, BARBER H B, BARRETT H H, et al. Ultra-high-resolution brain SPECT imaging: simulation results[J]. IEEE Conference on Nuclear Science Symposium and Medical Imaging, 1992: 1071-1073 vol.2. [33] HAMILTON W J, RHIGER D R, SEN S, et al. Very high resolution detection of gamma radiation at room-temperature using p-i-n detectors of CdZnTe and HgCdTe[J]. IEEE Transactions on Nuclear Science, 1994, 41(4): 989-992. [34] HAMILTON W J, RHIGER D R, SEN S, et al. HgCdTe/CdZnTe P-I-N high-energy photon detectors[J]. Journal of Electronic Materials, 1996, 25(8): 1286-1292. [35] 杨 帆,王 涛,周伯儒,等.室温核辐射探测器用碲锌镉晶体生长研究进展[J].人工晶体学报,2020,49(4):561-569. YANG F, WANG T, ZHOU B R, et al. Research progress on CdZnTe crystal growth for room temperature radiation detection applications[J]. Journal of Synthetic Crystals, 2020, 49(4): 561-569(in Chinese). [36] WU S H, ZHA G Q, CAO K, et al. The growth of CdZnTe epitaxial thick film by close spaced sublimation for radiation detector[J]. Vacuum, 2019, 168: 108852. [37] ZHA G Q, LIN Y, ZENG D M, et al. Resistive switching properties in CdZnTe films[J]. Applied Physics Letters, 2015, 106(6): 062103. [38] ZHA G Q, YANG J, XU L Y, et al. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe[J]. Journal of Applied Physics, 2014, 115(4): 043715. [39] XU L Y, WANG J Y, DONG J P, et al. Improvement of surface defects in CdZnTe crystals by rapid thermal annealing[J]. Journal of Electronic Materials, 2020, 49(8): 4563-4568. [40] XU L Y, JIE W Q. Deep-level defect effects on the low-temperature photoexcitation process in CdZnTe crystals[J]. Journal of Electronic Materials, 2020, 49(1): 429-434. [41] 谷亚旭.CdZnTe核辐射探测器性能不均匀性研究[D].西安:西北工业大学,2017. GU Y X. Performance non-uniformity of CdZnTe nuclear radiation detectors[D]. Xi'an: Northwestern Polytechnical University, 2017(in Chinese). [42] 查钢强,王 涛,徐亚东,等.新型CZT半导体X射线和γ射线探测器研制与应用展望[J].物理,2013,42(12):862-869. ZHA G Q, WANG T, XU Y D, et al. The development of CZT semiconductor X-ray and γ-ray detectors[J]. Physics, 2013, 42(12): 862-869(in Chinese). [43] 王 涛,徐亚东,查钢强,等.室温辐射探测器用CdZnTe晶体生长及其器件制备[J].机械科学与技术,2010,29(4):546-550. WANG T, XU Y D, ZHA G Q, et al. Detector grade CdZnTe crystal growth and device fabrication[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(4): 546-550(in Chinese). [44] DOTY F P, BARBER H B, AUGUSTINE F L, et al. Pixellated CdZnTe detector arrays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 353(1/2/3): 356-360. [45] HE Z, KNOLL G F, WEHE D K, et al. Coplanar grid patterns and their effect on energy resolution of CdZnTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 411(1): 107-113. [46] MONTEMONT G, ARQUES M, VERGER L, et al. A capacitive Frisch grid structure for CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2001, 48(3): 278-281. [47] ERLANDSSON K, HOWELL E, ROTH N, et al. Assessing possible use of CZT technology for application to brain SPECT[C]//2011 IEEE Nuclear Science Symposium Conference Record. October 23-29, 2011, Valencia, Spain. IEEE, 2011: 3354-3358. [48] LIU C, CHAN C, HARRIS M, et al. Respiratory gating for a stationary dedicated cardiac SPECT system[C]//2011 IEEE Nuclear Science Symposium Conference Record. October 23-29, 2011, Valencia, Spain. IEEE, 2011: 2898-2901. [49] 尹永智.基于350微米像素阳极碲锌镉探测器的500微米分辨率的正电子发射断层显像研究[D].兰州:兰州大学,2012. YIN Y Z. Investigation of sub-500 μm PET image based on350 μm pitch pixelated CdZnTe detectors[D]. Lanzhou: Lanzhou University, 2012(in Chinese). [50] BARBER W C, WESSEL J C, NYGARD E, et al. High flux energy-resolved photon-counting X-ray imaging arrays with CdTe and CdZnTe for clinical CT[C]//2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). June 23-27, 2013, Marseille, France. IEEE, 2013: 1-5. [51] MATSUURA D, GENBA K, KURODA Y, et al. “ASTROCAM 7000HS” radioactive substance visualization camera[EB/OL]. 2014 [52] MCCLESKEY M, KAYE W, MACKIN D S, et al. Evaluation of a multistage CdZnTe Compton camera for prompt γ imaging for proton therapy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 785: 163-169. [53] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902. [54] KASAP S O, ROWLANDS J A. Review X-ray photoconductors and stabilized a-Se for direct conversion digital flat-panel X-ray image-detectors[J]. Journal of Materials Science: Materials in Electronics, 2000, 11(3): 179-198. [55] KASAP S, FREY J B, BELEV G, et al. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes[J]. Physica Status Solidi (b), 2009, 246(8): 1794-1805. [56] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2015, 6(1): 613-617. [57] QUE W, ROWLANDS J A. X-ray imaging using amorphous selenium: inherent spatial resolution[J]. Medical Physics, 1995, 22(4): 365-374. [58] YUAN Y B, CHAE J, SHAO Y C, et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells[J]. Advanced Energy Materials, 2015, 5(15): 1500615. [59] CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93. [60] 许 平.CVD金刚石膜辐射探测器的研制与性能研究[D].衡阳:南华大学,2020. XU P. Development and performance of CVD diamond film radiation detectors[D]. Hengyang: University of South China, 2020(in Chinese). [61] FRANKLIN M, FRY A, GAN K K, et al. Development of diamond radiation detectors for SSC and LHC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 315(1/2/3): 39-42. [62] HIBINO K, KASHIWAGI T, OKUNO S, et al. The design of diamond Compton telescope[J]. Astrophysics and Space Science, 2007, 309(1/2/3/4): 541-544. [63] LECHNER P, HARTMANN R, SOLTAU H, et al. Pair creation energy and Fano factor of silicon in the energy range of soft X-rays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 377(2/3): 206-208. [64] TORRISI L, SCIUTO A, CANNAVÒ A, et al. SiC detector for sub-MeV alpha spectrometry[J]. Journal of Electronic Materials, 2017, 46(7): 4242-4249. [65] ROGALLA M, RUNGE K, SÖLDNER-REMBOLD A. Particle detectors based on semi-insulating silicon carbide[J]. Nuclear Physics B-Proceedings Supplements, 1999, 78(1/2/3): 516-520. [66] EBERTH J, SIMPSON J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors[J]. Progress in Particle and Nuclear Physics, 2008, 60(2): 283-337. [67] ALEXIEV D, REINHARD M I, MO L, et al. Review of Ge detectors for gamma spectroscopy[J]. Australasian Physics & Engineering Sciences in Medicine, 2002, 25(3): 102-109. [68] SOLTANI A, BARKAD H A, MATTALAH M, et al. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors[J]. Applied Physics Letters, 2008, 92(5): 053501. [69] LI J, MAJETY S, DAHAL R, et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers[J]. Applied Physics Letters, 2012, 101(17): 171112. [70] MAITY A, GRENADIER S J, LI J, et al. High sensitivity hexagonal boron nitride lateral neutron detectors[J]. Applied Physics Letters, 2019, 114(22): 222102. [71] ZHIGAL’SKII G P, KHOLOMINA T A. Excess noise and deep levels in GaAs detectors of nuclear particles and ionizing radiation[J]. Journal of Communications Technology and Electronics, 2015, 60(6): 517-542. [72] ALEXIEV D, BUTCHER K S A. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 317(1/2): 111-115. [73] KHLUDKOV S S. Diffusion of impurities in GaAs, diffusion structures and devices[J]. Tomsk State University Journal, 2005, (285): 84-94. [74] KANNO I, HISHIKI S, SUGIURA O, et al. InSb cryogenic radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568(1): 416-420. [75] FUNAKI M, OZAKI T, SATOH K, et al. Growth and characterization of CdTe single crystals for radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436(1/2): 120-126. [76] SELLIN P J, DAVIES A W, BOROUMAND F, et al. IBIC characterization of charge transport in CdTe∶Cl[J]. Semiconductors, 2007, 41(4): 395-401. [77] YÜCEL H, BIRGÜL Ö, UYAR E, et al. A novel approach in voltage transient technique for the measurement of electron mobility and mobility-lifetime product in CdZnTe detectors[J]. Nuclear Engineering and Technology, 2019, 51(3): 731-737. [78] SZELES C. Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors[J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 1242-1249. [79] RAFIEI R, BOARDMAN D, SARBUTT A, et al. Investigation of the charge collection efficiency of CdMnTe radiation detectors[J]. IEEE Transactions on Nuclear Science, 2012, 59(3): 634-641. [80] HOSSAIN A, CUI Y, BOLOTNIKOV A E, et al. Vanadium-doped cadmium manganese telluride (Cd1-xMnxTe) crystals as X- and gamma-ray detectors[J]. Journal of Electronic Materials, 2009, 38(8): 1593-1599. [81] MYCIELSKI A, BURGER A, SOWINSKA M, et al. Is the (Cd, Mn)Te crystal a prospective material for X-ray and γ-ray detectors?[J]. Physica Status Solidi (c), 2005, 2(5): 1578-1585. [82] KABIR M Z, HIJAZI N. Temperature and field dependent effective hole mobility and impact ionization at extremely high fields in amorphous selenium[J]. Applied Physics Letters, 2014, 104(19): 192103. [83] BACIAK J E, HE Z. Long-term stability of 1-cm thick pixelated HgI2 gamma-ray spectrometers operating at room temperature[J]. IEEE Transactions on Nuclear Science, 2004, 51(4): 1886-1894. [84] BURGER A, NASON D, FRANKS L. Mercuric iodide in prospective[J]. Journal of Crystal Growth, 2013, 379: 3-6. [85] BEYERLE A, HULL K, MARKAKIS J, et al. Gamma-ray spectrometry with thick mercuric iodide detectors[J]. Nuclear Instruments and Methods in Physics Research, 1983, 213(1): 107-113. [86] LIU J, ZHANG Y. Growth of lead iodide single crystals used for nuclear radiation detection of Gamma-rays[J]. Crystal Research and Technology, 2017, 52(3): 1600370. [87] MANFREDOTTI C, MURRI R, QUIRINI A, et al. PbI2 as nuclear particle detector[J]. IEEE Transactions on Nuclear Science, 1977, 24(1): 126-128. [88] LINTEREUR A T, QIU W, NINO J C, et al. Iodine based compound semiconductors for room temperature gamma-ray spectroscopy[C]//SPIE Defense and Security Symposium. Proc SPIE 6945, Optics and Photonics in Global Homeland Security Ⅳ, Orlando, Florida, USA. 2008, 6945: 694503. [89] NASON D, KELLER L. The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport[J]. Journal of Crystal Growth, 1995, 156(3): 221-226. [90] JELLISON G E, RAMEY J O, BOATNER L A. Optical functions of BiI3 as measured by generalized ellipsometry[J]. Physical Review B, 1999, 59(15): 9718-9721. [91] HITOMI K, SHOJI T, ISHII K. Advances in TlBr detector development[J]. Journal of Crystal Growth, 2013, 379: 93-98. [92] SHOROHOV M, KOUZNETSOV M, LISITSKIY I, et al. Recent results in TlBr detector crystals performance[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1855-1858. [93] KIM H, CIRIGNANO L, CHURILOV A, et al. Developing larger TlBr detector: detector performance[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 819-823. |
[1] | KAI Cuihong, WANG Rong, YANG Deren, PI Xiaodong. Epitaxy of Wide Bandgap Semiconductors on Silicon Carbide Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1780-1795. |
[2] | LUO Hao, ZHANG Xuqing, YANG Deren, PI Xiaodong. Research Progress on High-Purity SiC Powder for Single Crystal SiC Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(8): 1562-1574. |
[3] | JI Kaidi, GAO Cancan, YANG Fashun, XIONG Qian, MA Kui. Effect of Post Annealing Atmosphere on β-Ga2O3 Thin Films Prepared by Magnetron Sputtering [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(6): 1056-1061. |
[4] | LIU Peng, ZHU Zhen, CHEN Kang, WANG Rongkun, XIA Wei, XU Xiangang. High Reliable Al-Free 808 nm Semiconductor Laser Diode Pump Source [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(4): 757-761. |
[5] | LIU Qichao, ZHANG Hui. Research Progress of Low-Dimensional Group-VA Nanomaterials:from Structural Properties to Preparation Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 578-586. |
[6] | CHEN Wangyibo, XU Yu, CAO Bing, XU Ke. Epitaxial Laterally Overgrown Free-Standing GaN through HVPE by Wide-Period Mask Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 416-420. |
[7] | WANG Ting, ZHAO Hongli, GUO Shiwei, YAO Juan, LI Shuang, FU Yuechun, SHEN Xiaoming, HE Huan. Preparation and Electrical Properties of n-In0.35Ga0.65N/p-Si Heterojunction [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 484-490. |
[8] | JIANG Chong, WANG Yi, DING Zhao, HUANG Yanbin, LUO Zijiang, LI Zhihong, LI Ershi, GUO Xiang. Diffusion and Nucleation of Aluminum Droplet on GaAs(001) Surface during Molecular Beam Epitaxy Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 283-289. |
[9] | GAO Cancan, JI Kaidi, MA Kui, YANG Fashun. Effects of Substrate Heating Temperature and Post-Annealing Temperature on the Preparation of β-Ga2O3 Thin Films by Magnetron Sputtering [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 296-301. |
[10] | HU Xueying, DONG Hailiang, JIA Zhigang, ZHANG Aiqin, LIANG Jian, XU Bingshe. Research Progress of GaAs Based 980 nm High Power Semiconductor Lasers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 381-390. |
[11] | LIU Jingming, ZHAO Youwen. Research Progress of BAs Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 391-396. |
[12] | QIN Haoming, SHEN Nannan, HE Yihui. Research Progress on the Melt-Grown Inorganic Perovskite Semiconductor Single Crystals and Devices for Nuclear Radiation Detection [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1830-1843. |
[13] | YU Hui, ZHANG Mengmeng, DU Yuanyuan, XI Shouzhi, ZHA Gangqiang, JIE Wanqi. Analysis on Energy Spectra for CdZnTe Gamma Ray Detector [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1883-1891. |
[14] | DU Yuanyuan, JIANG Weichun, CHENG Xiao, LUO Tao. Preparation and Characterization of CdMnTe Crystal Nuclear Radiation Detector by Te Solvent Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1892-1899. |
[15] | BAI Wei, ZHAO Chao, LIU Ming. Development and Application of InSb Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2230-2243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||