JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (10): 1830-1843.
• Reviews • Previous Articles Next Articles
QIN Haoming, SHEN Nannan, HE Yihui
Received:
2021-08-27
Online:
2021-10-15
Published:
2021-11-24
CLC Number:
QIN Haoming, SHEN Nannan, HE Yihui. Research Progress on the Melt-Grown Inorganic Perovskite Semiconductor Single Crystals and Devices for Nuclear Radiation Detection[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1830-1843.
[1] 张廷克,李闽榕,潘启龙.中国核能发展报告2020[M].北京:社会科学文献出版社,2020. ZHANG T K, LI M E, PAN Q L. China nuclear energy development report 2020[M]. Beijing: Social Science Literature Press, 2020(in Chinese). [2] 中国核能行业协会.中国核能年鉴2020年卷[M]. 北京:中国原子能出版社,2020. China Nuclear Energy Industry Association. China nuclear energy yearbook 2020 volume[M]. Beijing: China Atomic Energy Press, 2020(in Chinese). [3] SORENSON J A, PHELPS M E, BROWNELL G L. Physics in nuclear medicine[J]. Physics Today, 1982, 35(5): 85. [4] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902. [5] LI G Q, JIE W Q, HUA H, et al. Cd1-xZnxTe: Growth and characterization of crystals for X-ray and gamma-ray detectors[J]. Progress in Crystal Growth and Characterization of Materials, 2003, 46(3): 85-104. [6] BUTLER J F, LINGREN C L, DOTY F P. Cd1-x/ZnxTe gamma ray detectors[J]. IEEE Transactions on Nuclear Science, 1992, 39(4): 605-609. [7] ROSE G. De novis quibusdam fossilibus quae in montibus uraliis inveniuntur[M]. AG Schadii, 1839. [8] YE H Y, TANG Y Y, LI P F, et al. Metal-free three-dimensional perovskite ferroelectrics[J]. Science, 2018, 361(6398): 151-155. [9] ZHENG T, WU J G, XIAO D Q, et al. Recent development in lead-free perovskite piezoelectric bulk materials[J]. Progress in Materials Science, 2018, 98: 552-624. [10] DONG H, ZHANG C, LIU X, et al. Materials chemistry and engineering in metal halide perovskite lasers[J]. Chemical Society Reviews, 2020, 49(3): 951-982. [11] PARK N G. Perovskite solar cells: an emerging photovoltaic technology[J]. Materials Today, 2015, 18(2): 65-72. [12] LEE Y, KWON J, HWANG E, et al. High-performance perovskite-graphene hybrid photodetector[J]. Advanced Materials, 2015, 27(1): 41-46. [13] STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal Growth & Design, 2013, 13(7): 2722-2727. [14] KAKAVELAKIS G, GEDDA M, PANAGIOTOPOULOS A, et al. Metal halide perovskites for high-energy radiation detection[J]. Advanced Science, 2020, 7(22): 2002098. [15] WEI H, HUANG J. Halide lead perovskites for ionizing radiation detection[J]. Nat Commun, 2019, 10(1): 1066. [16] WU H D, GE Y S, NIU G D, et al. Metal halide perovskites for X-ray detection and imaging[J]. Matter, 2021, 4(1): 144-163. [17] KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3[J]. The Journal of Physical Chemistry Letters, 2017, 8(2): 489-493. [18] YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9(7): 444-449. [19] HE Y H, KE W J, ALEXANDER G C B, et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals[J]. ACS Photonics, 2018, 5(10): 4132-4138. [20] LIANG J, WANG C X, WANG Y R, et al. All-inorganic perovskite solar cells[J]. Journal of the American Chemical Society, 2016, 138(49): 15829-15832. [21] 介万奇.Bridgman法晶体生长技术的研究进展[J].人工晶体学报,2012,41(S1):24-35. JIE W Q. Progress of Bridgman crystal growth technology[J]. Journal of Synthetic Crystals, 2012, 41(S1): 24-35(in Chinese). [22] 杨 帆,王 涛,周伯儒,等.室温核辐射探测器用碲锌镉晶体生长研究进展[J].人工晶体学报,2020,49(4):561-569. YANG F, WANG T, ZHOU B R, et al. Research progress on CdZnTe crystal growth for room temperature radiation detection applications[J]. Journal of Synthetic Crystals, 2020, 49(4): 561-569(in Chinese). [23] SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596. [24] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485. [25] ZHAO Y, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chemical Society Reviews, 2016, 45(3): 655-689. [26] KIESLICH G, SUN S, CHEETHAM A K. An extended tolerance factor approach for organic-inorganic perovskites[J]. Chemical Science, 2015, 6(6): 3430-3433. [27] AMAT A, MOSCONI E, RONCA E, et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting[J]. Nano Letters, 2014, 14(6): 3608-3616. [28] ZHANG F, LU H P, TONG J H, et al. Advances in two-dimensional organic-inorganic hybrid perovskites[J]. Energy & Environmental Science, 2020, 13(4): 1154-1186. [29] KIM B, SEOK S I. Molecular aspects of organic cations affecting the humidity stability of perovskites[J]. Energy & Environmental Science, 2020, 13(3): 805-820. [30] LIAO J F, RAO H S, CHEN B X, et al. Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(5): 2066-2072. [31] WANG Y G, ZHANG H, ZHU J L, et al. Antiperovskites with exceptional functionalities[J]. Advanced Materials, 2020, 32(7): 1905007. [32] ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids[J]. Materials Science and Engineering: R: Reports, 2019, 137: 38-65. [33] MØLLER C K. Crystal structure and photoconductivity of cæsium plumbohalides[J]. Nature, 1958, 182(4647): 1436. [34] LI J, YU Q, HE Y, et al. Cs2PbI2Cl2, all-inorganic two-dimensional ruddlesden-popper mixed halide perovskite with optoelectronic response[J]. Journal of the American Chemical Society, 2018, 140(35): 11085-11090. [35] HE Y H, STOUMPOS C C, HADAR I, et al. Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor[J]. Journal of the American Chemical Society, 2021, 143(4): 2068-2077. [36] LIN W W, HE J G, MCCALL K M, et al. Inorganic halide perovskitoid TlPbI3 for ionizing radiation detection[J]. Advanced Functional Materials, 2021, 31(13): 2006635. [37] SUN Q H, XU Y D, ZHANG H J, et al. Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection[J]. Journal of Materials Chemistry A, 2018, 6(46): 23388-23395. [38] MCCALL K M, STOUMPOS C C, KOSTINA S S, et al. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A=Cs, Rb; M=Bi, Sb)[J]. Chemistry of Materials, 2017, 29(9): 4129-4145. [39] LI X, DU X Y, ZHANG P, et al. Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection[J]. Science China Materials, 2021, 64(6): 1427-1436. [40] MCCALL K M, STOUMPOS C C, KONTSEVOI O Y, et al. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: dimensional expansion induces a direct band gap but enhances electron-phonon coupling[J]. Chemistry of Materials, 2019, 31(7): 2644-2650. [41] XIAO B, WANG F B, XU M, et al. Melt-grown large-sized Cs2TeI6 crystals for X-ray detection[J]. CrystEngComm, 2020, 22(31): 5130-5136. [42] LIN W W, STOUMPOS C C, LIU Z F, et al. TlSn2I5, a robust halide antiperovskite semiconductor for γ-ray detection at room temperature[J]. ACS Photonics, 2017, 4(7): 1805-1813. [43] LI H, MENG F, MALLIAKAS C D, et al. Mercury chalcohalide semiconductor Hg3Se2Br2 for hard radiation detection[J]. Crystal Growth & Design, 2016, 16(11): 6446-6453. [44] SONG J Z, CUI Q Z, LI J H, et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors[J]. Advanced Optical Materials, 2017, 5(12): 1700157. [45] ZHANG M Z, ZHENG Z P, FU Q Y, et al. Growth and characterization of all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals[J]. CrystEngComm, 2017, 19(45): 6797-6803. [46] XU J Y, LIANG X X, JIN M, et al. Growth and characterization of all-inorganic perovskite CsPbBr3 crystal by a traveling zone melting method[J]. Journal of Inorganic Materials, 2018, 33(11): 1253. [47] ZHANG P, ZHANG G, LIU L, et al. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 5040-5046. [48] ZHANG P, SUN Q H, XU Y D, et al. Enhancing carrier transport properties of melt-grown CsPbBr3 single crystals by eliminating inclusions[J]. Crystal Growth & Design, 2020, 20(4): 2424-2431. [49] HE Y H, LIU Z F, MCCALL K M, et al. Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922: 217-221. [50] MCCALL K M, FRIEDRICH D, CHICA D G, et al. Perovskites with a twist: strong In1+ off-centering in the mixed-valent CsInX3 (X=Cl, Br)[J]. Chemistry of Materials, 2019, 31(22): 9554-9566. [51] LI J W, STOUMPOS C C, TRIMARCHI G G, et al. Air-stable direct bandgap perovskite semiconductors: all-inorganic tin-based heteroleptic halides AxSnClyIz (A=Cs, Rb)[J]. Chemistry of Materials, 2018, 30(14): 4847-4856. [52] STOEGER W. The crystal structures of TlPbI3 and Tl4PbI6[J]. Zeitschrift Für Naturforschung B, 1977, 32(9): 975-981. [53] KOCSIS M. Proposal for a new room temperature X-ray detector-thallium lead iodide[J]. IEEE Transactions on Nuclear Science, 2000, 47(6): 1945-1947. [54] HITOMI K, ONODERA T, SHOJI T, et al. Thallium lead iodide radiation detectors[J]. IEEE Transactions on Nuclear Science, 2003, 50(4): 1039-1042. [55] YANG G, PHAN Q V, LIU M, et al. Material defect study of thallium lead iodide (TlPbI3) crystals for radiation detector applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161516. [56] MCCALL K M, LIU Z F, TRIMARCHI G, et al. Α-particle detection and charge transport characteristics in the A3M2I9 defect perovskites (A=Cs, Rb; M=Bi, Sb)[J]. ACS Photonics, 2018, 5(9): 3748-3762. [57] ISHII M, KOBAYASHI M. Single crystals for radiation detectors[J]. Progress in Crystal Growth and Characterization of Materials, 1992, 23: 245-311. [58] HANY I, YANG G, PHAN Q V, et al. Thallium lead iodide (TlPbI3) single crystal inorganic perovskite: electrical and optical characterization for gamma radiation detection[J]. Materials Science in Semiconductor Processing, 2021, 121: 105392. [59] TAKAHASHI T, WATANABE S. Recent progress in CdTe and CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2001, 48(4): 950-959. [60] JOHNSEN S, LIU Z F, PETERS J A, et al. Thallium Chalcohalides for X-ray and γ-ray Detection[J]. Journal of the American Chemical Society, 2011, 133(26): 10030-10033. [61] HE Y, KONTSEVOI O Y, STOUMPOS C C, et al. Defect antiperovskite compounds Hg3Q2I2 (Q=S, Se, and Te) for room-temperature hard radiation detection[J]. Journal of the American Chemical Society, 2017, 139(23): 7939-7951. [62] HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications, 2018, 9: 1609. [63] HE Y H, PETRYK M, LIU Z F, et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays[J]. Nature Photonics, 2021, 15(1): 36-42. [64] CHEN H, AWADALLA S A, HARRIS F, et al. Spectral response of THM grown CdZnTe crystals[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1567-1572. [65] MCGREGOR D S, HERMON H. Room-temperature compound semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395(1): 101-124. [66] JANG J, JI S, GRANDHI G K, et al. Multimodal digital X-ray scanners with synchronous mapping of tactile pressure distributions using perovskites[J]. Advanced Materials, 2021, 33(30): 2008539. [67] OU X Y, QIN X, HUANG B L, et al. High-resolution X-ray luminescence extension imaging[J]. Nature, 2021, 590(7846): 410-415. [68] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91. [69] FÖRSTER A, BRANDSTETTER S, SCHULZE-BRIESE C. Transforming X-ray detection with hybrid photon counting detectors[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2147): 20180241. [70] PROKESCH M, SOLDNER S A, SUNDARAM A G, et al. CdZnTe detectors operating at X-ray fluxes of 100 million photons /(mm2·s) [J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1854-1859. [71] HE Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 463(1/2): 250-267. [72] 陈伯显,张 智.核辐射物理及探测学[M]. 哈尔滨:哈尔滨工程大学出版社,2011. CHEN B X, ZHANG Z. Nuclear radiation physics and detection[M]. Harbin: Harbin Engineering University Press, 2011(in Chinese). |
[1] | WANG Wei, HUANG Ming, CHANG Xiaoyu, ZHANG Hao, WU Qi, LONG Lianchun. Eccentric Balance of Improved Single Crystal Furnace Lifting System [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1774-1779. |
[2] | LIN Guangwei, WANG Shan, ZHANG Xiya, GAO Junwei, GAO Dedong. Optimal Design and Analysis of Heating System of Czochralski Single Crystal Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(8): 1541-1551. |
[3] | ZHANG Xiya, GAO Dedong, WANG Shan, LIN Guangwei, GAO Junwei. Research on Identification Method of Crystal Diameter Model Based on Data Driven [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(8): 1552-1561. |
[4] | LUO Hao, ZHANG Xuqing, YANG Deren, PI Xiaodong. Research Progress on High-Purity SiC Powder for Single Crystal SiC Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(8): 1562-1574. |
[5] | XU Jie, SONG Qingsong, LIU Jian, DING Yuchong, LI Dongzhen, XU Xiaodong, XU Jun. Growth and Spectral Properties of Sm3+-Doped YAG and Y3ScAl4O12 Single Crystal Fibers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(7): 1391-1396. |
[6] | CHEN Chen, ZHAO Kun, HAN Huanpeng. Design of Thermal Field for 6-Inch Low Dislocation Germanium Single Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(6): 979-986. |
[7] | ZHANG Xiya, GAO Dedong, WANG Shan, PENG Xin, LIN Guangwei, GAO Junwei. Design and Research on Descended Heat Shield of the Single Crystal Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(6): 987-995. |
[8] | LUO Haosu, JIAO Jie, CHEN Rui, ZHU Rongfeng, ZHANG Zhang, XU Jialin, ZHAO Jing, WANG Xi'an, LIN Di, CHEN Jianwei, DI Wenning, LU Li, ZHU Lili. Multifunctional Properties and Device Applications of the Relaxor Ferroelectric Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 783-802. |
[9] | QI Zhengchao, XU Tingxiang, LIU Xuechao, WANG Ding. Effect of Impurities and Defects on the Thermal Conductivity of Single Crystal SiC [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 816-824. |
[10] | GE Mengran, BI Wenbo. Research Progress on Low Crack Damage Slicing Technology for Single Crystal Silicon [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 967-973. |
[11] | PENG Yan, CHEN Xiufang, XIE Xuejian, XU Xiangang, HU Xiaobo, YANG Xianglong, YU Guojian, WANG Yaohao. Research Progress of Semi-Insulating Silicon Carbide Single Crystal Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(4): 619-628. |
[12] | LIU Hong, SANG Yuanhua, SUN Dehui, WANG Dongzhou, WANG Jiyang. Lithium Niobate Crystals in the Information Age: Progress and Prospect [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(4): 708-715. |
[13] | WANG Qingguo, LIU Bo, LUO Ping, TANG Huili, WU Feng, KANG Sen, DUAN Jinzhu, WANG Qinfeng, XU Jun. Crystal Growth and Scintillation Luminescence Properties of Ti:Al2O3 Crystals Grown with Kyropoulos Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(4): 762-767. |
[14] | LI Xiuming, WU Guangtao, ZHANG Rui. Surface Acoustic Waves Properties of 0.24PIN-0.47PMN-0.29PT Relaxor Ferroelectric Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 260-265. |
[15] | REN Qian, LIU Ye, GAO Ting, ZHOU Zhixu, ZHAO Chunshen, CHAI Huifang. Crystal Structure and Density Functional Theory of 2,2-Bis(4-Chloro-2-Fluorobenzyl) Diethyl Malonate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(2): 338-344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||