[1] 刘瀛旻,刘 芬,尤瑞松,等.量子芯片的研究现状与应用[J].科技智囊,2020(12):55-60. LIU Y M, LIU F, YOU R S, et al. Research status and application of quantum chip[J]. Think Tank of Science & Technology, 2020(12): 55-60(in Chinese). [2] 梁梓豪,黄红斌,陈舜儿,等.硅基光互连网络的研究[J].光通信技术,2016,40(10):4-7. LIANG Z H, HUANG H B, CHEN S E, et al. Study of silicon-based optical interconnection network[J]. Optical Communication Technology, 2016, 40(10): 4-7(in Chinese). [3] 宋国峰,冯 雪,黄北举,等.可集成的硅基光互连技术研究[J].科技创新导报,2016,13(8):173-174. SONG G F, FENG X, HUANG B J, et al. 2013 annual report on investigation of integratable Si-based optical interconnect technology[J]. Science and Technology Innovation Herald, 2016, 13(8): 173-174(in Chinese). [4] 沈 浩,李东升,杨德仁.硅基光源的研究进展[J].物理学报,2015,64(20):204208. SHEN H, LI D S, YANG D R. Research progress of silicon light source[J]. Acta Physica Sinica, 2015, 64(20): 204208(in Chinese). [5] 黄北举,张 赞,张赞允,等.硅基光电子与微电子单片集成研究进展[J].微纳电子与智能制造,2019,1(3):55-67. HUANG B J, ZHANG Z, ZHANG Z Y, et al. Research progress on monolithic integration of silicon based optoelectronics with microelectronics[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2019, 1(3): 55-67(in Chinese). [6] WIRTHS S, GEIGER R, VON DEN DRIESCH N, et al. Lasing in direct-bandgap GeSn alloy grown on Si[J]. Nature Photonics, 2015, 9(2): 88-92. [7] 曹佳浩,李东升,皮孝东,等.硅基光电子发光材料与器件[J].中国科学:技术科学,2017,47(10):1001-1016. CAO J H, LI D S, PI X D, et al. Silicon-based optoelectronic luminescent materials and devices[J]. Scientia Sinica (Technologica), 2017, 47(10): 1001-1016(in Chinese). [8] HUSSAIN A M, WEHBE N, HUSSAIN M M. SiSn diodes: theoretical analysis and experimental verification[J]. Applied Physics Letters, 2015, 107(8): 082111. [9] THAI Q M, CHRETIEN J, BERTRAND M, et al. GeSn optical gain and lasing characteristics modelling[J]. Physical Review B, 2020, 102(15): 155203. [10] TRAN T T, HUDSPETH Q, LIU Y N, et al. Ion beam synthesis and photoluminescence study of supersaturated fully-relaxed Ge-Sn alloys[J]. Materials Science and Engineering: B, 2020, 262: 114702. [11] KONDRATENKO S V, DERENKO S S, MAZUR Y I, et al. Impact of defects on photoexcited carrier relaxation dynamics in GeSn thin films[J]. Journal of Physics Condensed Matter, 2020, 33(6): 065702. [12] LIN C Y, HUANG C H, HUANG S H, et al. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells[J]. Applied Physics Letters, 2016, 109(9): 091103. [13] TONKIKH A A, EISENSCHMIDT C, TALALAEV V G, et al. Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing[J]. Applied Physics Letters, 2013, 103(3): 032106. [14] LAN H S, LIU C W. Band alignments at strained Ge1-x Snx/relaxed Ge1-y Sny heterointerfaces[J]. Journal of Physics D: Applied Physics, 2017, 50(13): 13LT02. [15] HUANG W Q, CHENG B W, XUE C L, et al. Comparative studies of band structures for biaxial (100)-, (110)-, and (111)-strained GeSn: a first-principles calculation with GGA+U approach[J]. Journal of Applied Physics, 2015, 118(16): 165704. [16] 刘 智,张 旭,何 超,等.Si基Ⅳ族光电器件的研究进展(一):激光器[J].激光与光电子学进展,2014,51(11):7-15. LIU Z, ZHANG X, HE C, et al. Progress in study of Si-based group Ⅳ optoelectronic devices(Ⅰ): lasers[J]. Laser & Optoelectronics Progress, 2014, 51(11): 7-15(in Chinese). [17] HUANG W Q, CHENG B W, XUE C L, et al. The band structure and optical gain of a new Ⅳ-group alloy GePb: a first-principles calculation[J]. Journal of Alloys and Compounds, 2017, 701: 816-821. [18] HUANG W Q, YANG H, CHENG B W, et al. Theoretical study of the bandgap regulation of a two-dimensional GeSn alloy under biaxial strain and uniaxial strain along the armchair direction[J]. Physical Chemistry Chemical Physics, 2018, 20(36): 23344-23351. [19] PENG L Z, LI X L, ZHENG J, et al. Room-temperature direct-bandgap electroluminescence from type-I GeSn/SiGeSn multiple quantum wells for 2 μm LEDs[J]. Journal of Luminescence, 2020, 228: 117539. [20] PENG L Z, LI X L, LIU Z, et al. Horizontal GeSn/Ge multi-quantum-well ridge waveguide LEDs on silicon substrates[J]. Photonics Research, 2020, 8(6): 899-903. [21] VON DEN DRIESCH N, STANGE D, RAINKO D, et al. Epitaxy of Si-Ge-Sn-based heterostructures for CMOS-integratable light emitters[J]. Solid-State Electronics, 2019, 155: 139-143. [22] MOONTRAGOON P, SOREF R A, IKONIC Z. The direct and indirect bandgaps of unstrained SixGe1-x-ySny and their photonic device applications[J]. Journal of Applied Physics, 2012, 112(7): 073106. [23] MOONTRAGOON P, PENGPIT P, BURINPRAKHON T, et al. Electronic properties calculation of Ge1-x-ySixSny ternary alloy and nanostructure[J]. Journal of Non-Crystalline Solids, 2012, 358(17): 2096-2098. [24] ZHAO C Z, SUN S Y, ZHU M M, et al. First-principle calculation of the band structure of Ge1-xSnx alloy by screened-exchange local-density approximation theory[J]. Applied Physics A, 2020, 126(2): 1-6. [25] GHOSH G, VAN DE WALLE A, ASTA M. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM=Ti, Zr and Hf) systems: a comparison of cluster expansion and supercell methods[J]. Acta Materialia, 2008, 56(13): 3202-3221. [26] BEZI JAVAN M. First principles study of the electronic and optical properties of GaAs nanoparticles under the influence of external uniform electric field[J]. Physics Letters A, 2012, 376(45): 3241-3247. [27] CHOI J H, NA K D, LEE S C, et al. First-principles study on the formation of a vacancy in Ge under biaxial compressive strain[J]. Thin Solid Films, 2010, 518(22): 6373-6377. [28] HOSHINA Y, IWASAKI K, YAMADA A, et al. First-principles analysis of indirect-to-direct band gap transition of Ge under tensile strain[J]. Japanese Journal of Applied Physics, 2009, 48(4): 04C125. [29] LU X Q, CHINA 中 C O S C U O P Q S P P R, ZHAO Z G, et al. First-principles investigation of the structural and photoelectronic properties of CH3NH3PbxSn1-xI3 mixed perovskites[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1439-1445. [30] XU K, LIAO N B. The structural characteristics and electrical of MoS2 and MoS2/graphene: a first-principles study[J]. IOP Conference Series: Earth and Environmental Science, 2021, 675(1): 012198. [31] YAAKOB M K, ZULKAFLI N M A, KASIM M F, et al. Structural phase instability, mixed-phase, and energy band gap change in BiFeO3 under lattice strain effect from first-principles investigation[J]. Ceramics International, 2021, 47(9): 12592-12599. [32] RANJAN R, PAREEK P, PANDEY S K, et al. Investigation of GeSn/SiGeSn nanostructured layer for sensors in mid-infrared application[C]//SPIE Photonics Europe. Proc SPIE 11345, Nanophotonics Ⅷ, Online Only. 2020, 1134: 247-252. [33] DU W, THAI Q M, CHRÉTIEN J, et al. Study of Si-based GeSn optically pumped lasers with micro-disk and ridge waveguide structures[J]. Frontiers in Physics, 2019, 7: 147. DOI:10.3389/fphy.2019.00147. [34] Van De WALLE A, TIWARY P, JONG M D, et al. Efficient stochastic generation of special quasirandom structures[J]. Calphad, 2013, 42: 13-18. [35] SANG P P, WANG Q W, WEI W, et al. Semiconducting silicene: a two-dimensional silicon allotrope with hybrid honeycomb-kagome lattice[J]. ACS Materials Letters, 2021, 3(8): 1181-1188. [36] HUANG W Q, CHENG B W, XUE C L, et al. Comparative studies of clustering effect, electronic and optical properties for GePb and GeSn alloys with low Pb and Sn concentration[J]. Physica B: Condensed Matter, 2014, 443: 43-48. [37] MADELUNG O. Semiconductors: data handbook[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. [38] ADACHI S. Properties of group-Ⅳ, Ⅲ-V and Ⅱ-Ⅵ semiconductors[M]. Chichester, UK: John Wiley & Sons, Ltd, 2005. [39] 苏少坚,成步文,薛春来,等.GeSn合金的晶格常数对Vegard定律的偏离[J].物理学报,2012,61(17):176104. SU S J, CHENG B W, XUE C L, et al. Lattice constant deviation from Vegard's law in GeSn alloys[J]. Acta Physica Sinica, 2012, 61(17): 176104(in Chinese). [40] 苏少坚.Ge1-xSnx合金的外延生长与器件应用[D].北京:中国科学院,2012. SU S J. Epitaxial Growth and Device Applications of Ge1-xSnx Alloys[D]. Beijing: Chinese Academy of Sciences, 2012(in Chinese). |